• 제목/요약/키워드: Post Scription

검색결과 4건 처리시간 0.017초

BackTranScription (BTS)기반 제주어 음성인식 후처리기 연구 (BackTranScription (BTS)-based Jeju Automatic Speech Recognition Post-processor Research)

  • 박찬준;서재형;이설화;문현석;어수경;장윤나;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.178-185
    • /
    • 2021
  • Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다.

  • PDF

Back TranScription(BTS)기반 데이터 구축 검증 연구 (A Study on Verification of Back TranScription(BTS)-based Data Construction)

  • 박찬준;서재형;이설화;문현석;어수경;임희석
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.109-117
    • /
    • 2021
  • 최근 인간과 컴퓨터의 상호작용(HCI)을 위한 수단으로 음성기반 인터페이스의 사용률이 높아지고 있다. 이에 음성인식 결과에 오류를 교정하기 위한 후처리기에 대한 관심 또한 높아지고 있다. 그러나 sequence to sequence(S2S)기반의 음성인식 후처리기를 제작하기 위해서는 데이터 구축을 위해 human-labor가 많이 소요된다. 최근 기존의 구축 방법론의 한계를 완화하기 위하여 음성인식 후처리기를 위한 새로운 데이터 구축 방법론인 Back TranScription(BTS)이 제안되었다. BTS란 TTS와 STT 기술을 결합하여 pseudo parallel corpus를 생성하는 기술을 의미한다. 해당 방법론은 전사자(phonetic transcriptor)의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축할 수 있다. 본 논문은 기존의 BTS 연구를 확장하여 어떠한 기준 없이 데이터를 구축하는 것보다 어투와 도메인을 고려하여 데이터 구축을 해야함을 실험을 통해 검증을 진행하였다.

인디게임의 인터랙션 매커니즘과 서술방식 연구 (A Study on Interaction Mechanism and Narrative Style of Indie Games)

  • 이정엽
    • 한국게임학회 논문지
    • /
    • 제14권4호
    • /
    • pp.17-26
    • /
    • 2014
  • 이 논문은 최근 다수의 플랫폼에서 주목받고 있는 인디 게임(indie games)의 열풍을 그 게임의 인터랙션 방식의 혁신과 서사적 시도에서 찾고, 인디 게임의 게임 디자인과 스토리텔링, 그리고 그 위상에 관한 시론적인 해석을 시도하는 것을 목표로 한다. 이를 위해 인디 게임이 기존의 대규모 스튜디오 게임과 다른 면모를 인터랙션 메커니즘, 연출 스타일, 서술 방식에서 찾고 각각의 사례들을 분석하고자 했다. 아울러 한국 인디 게임이 스팀과 같은 글로벌 플랫폼에 진출한 사례를 살펴보고, 앞서 언급한 방법론들을 동일하게 적용하여 분석하였다.

한국어 음성인식 후처리기를 위한 학습 데이터 자동 생성 방안 (Automatic Generation of Training Data for Korean Speech Recognition Post-Processor)

  • 구선민;박찬준;문현석;서재형;어수경;허윤아;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.465-469
    • /
    • 2022
  • 자동 음성 인식 (Automatic Speech Recognition) 기술이 발달함에 따라 자동 음성 인식 시스템의 성능을 높이기 위한 방법 중 하나로 자동 후처리기 연구(automatic post-processor)가 진행되어 왔다. 후처리기를 훈련시키기 위해서는 오류 유형이 포함되어 있는 병렬 말뭉치가 필요하다. 이를 만드는 간단한 방법 중 하나는 정답 문장에 오류를 삽입하여 오류 문장을 생성하여 pseudo 병렬 말뭉치를 만드는 것이다. 하지만 이는 실제적인 오류가 아닐 가능성이 존재한다. 이를 완화시키기 위하여 Back TranScription (BTS)을 이용하여 후처리기 모델 훈련을 위한 병렬 말뭉치를 생성하는 방법론이 존재한다. 그러나 해당 방법론으로 생성 할 경우 노이즈가 적을 수 있다는 관점이 존재하다. 이에 본 연구에서는 BTS 방법론과 인위적으로 노이즈 강도를 추가한 방법론 간의 성능을 비교한다. 이를 통해 BTS의 정량적 성능이 가장 높은 것을 확인했을 뿐만 아니라 정성적 분석을 통해 BTS 방법론을 활용하였을 때 실제 음성 인식 상황에서 발생할 수 있는 실제적인 오류를 더 많이 포함하여 병렬 말뭉치를 생성할 수 있음을 보여준다.

  • PDF