• Title/Summary/Keyword: Post Lateral Resistance

Search Result 30, Processing Time 0.027 seconds

Effect of Dopants on Cobalt Silicidation Behavior at Metal-oxide-semiconductor Field-effect Transistor Sidewall Spacer Edge

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.871-875
    • /
    • 2001
  • Cobalt silicidation at sidewall spacer edge of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) with post annealing treatment for capacitor forming process has been investigated as a function of dopant species. Cobalt silicidation of nMOSFET with n-type Lightly Doped Drain (LDD) and pMOSFET with p-type LDD produces a well-developed cobalt silicide with its lateral growth underneath the sidewall spacer. In case of pMOSFET with n-type LDD, however, a void is formed at the sidewall spacer edge with no lateral growth of cobalt silicide. The void formation seems to be due to a retarded silicidation process at the LDD region during the first Rapid Thermal Annealing (RTA) for the reaction of Co with Si, resulting in cobalt mono silicide at the LDD region. The subsequent second RTA converts the cobalt monosilicide into cobalt disilicide with the consumption of Si atoms from the Si substrate, producing the void at the sidewall spacer edge in the Si region. The void formed at the sidewall spacer edge serves as a resistance in the current-voltage characteristics of the pMOSFET device.

  • PDF

A Study on the Behavior Properties of Residential-Commercial Building by Pushover Analysis (정적탄소성해석에 의한 복합구조물의 거동특성에 관한 연구)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.209-216
    • /
    • 2000
  • The purpose of this study is to investigate elasto-plastic behaviour and estimate ultimate resistance capacity of the residential-commercial building subjected to lateral force along the height of structure. Four types of residential-commercial building are chosen as analytical models and investigated by pushover analysis. Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program CANNY-99. Skeleton curve of bending stiffness model is bilinear, shear stiffness model is trilinear, and axial stiffness model is elastic. Skeleton curve of axial stiffness model has the axial compression and tension stiffness of reinforced concrete members. This study presents the change of inter story drift, story stiffness and hinge of story and member.

  • PDF

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Verification Studies for Field Peformance of Micropiling (성능검증을 위한 마이크로파일 현장 시험시공 및 재하시험)

  • Goo, Jeong-Min;Lee, Ki-Hwan;Cho, Young-Jun;Choi, Chang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.368-375
    • /
    • 2009
  • This paper describes field installation and load test results performed for three types of micropiles in the process of developing a new micropiling method. Field tests were performed for two conventional types(i.e., micropile reinforced with steel bar and gravity grouting, micropile reinforced with steel bar and steel casing and gravity grouting) and a proposed type(i.e., micropile reinforced with hollow steel pipe wrapped with geotextile-pack and pressurized grouting). The load test results subjected to axial compression and tension and lateral loading conditions are described in this paper. The micropiles were exposed in the air in order to verify the installation quality and curing condition of grouting material via ground excavation. Axial compression and tension test results indicate that the new micropile type provide at least 40% higher bearing capacity than that of conventional types. Based on the examination of exposed piles, it is induced that the proposed method, packed micropile, provides better interlocking between grouts and surrounding soils and increases higher frictional resistance comparing to conventional types.

  • PDF

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Mid-term results of IntracardiacLateral Tunnel Fontan Procedure in the Treatment of Patients with a Functional Single Ventricle (기능적 단심실 환자에 대한 심장내 외측통로 폰탄술식의 중기 수술성적)

  • 이정렬;김용진;노준량
    • Journal of Chest Surgery
    • /
    • v.31 no.5
    • /
    • pp.472-480
    • /
    • 1998
  • We reviewed the surgical results of intracardiac lateral tunnel Fontan procedure for the repair of functional single ventricles. Between 1990 and 1996, 104 patients underwent total cavopulmonary anastomosis. Patients' age and body weight averaged 35.9(range 10 to 173) months and 12.8(range 6.5 to 37.8) kg. Preoperative diagnoses included 18 tricuspid atresias and 53 double inlet ventricles with univentricular atrioventricular connection and 33 other complex lesions. Previous palliative operations were performed in 50 of these patients, including 37 systemic to pulmonary artery shunts, 13 pulmonary artery bandings, 15 surgical atrial septectomies, 2 arterial switch procedures, 2 resections of subaortic conus, 2 repairs of total anomalous pulmonary venous connection and 1 Damus-Stansel-Kaye procedure. In 19 patients bidirectional cavopulmonary shunt operation was performed before the Fontan procedure and in 1 patient a Kawashima procedure was required. Preoperative hemodynamics revealed a mean pulmonary artery pressure of 14.6(range 5 to 28) mmHg, a mean pulmonary vascular resistance of 2.2(range 0.4 to 6.9) wood-unit, a mean pulmonary to systemic flow ratio of 0.9(range 0.3 to 3.0), a mean ventricular end-diastolic pressure of 9.0 (range 3.0 to 21.0) mmHg, and a mean arterial oxygen saturation of 76.0(range 45.6 to 88.0)%. The operative procedure consisted of a longitudinal right atriotomy 2cm lateral to the terminal crest up to the right atrial auricle, followed by the creation of a lateral tunnel connecting the orifices of either the superior caval vein or the right atrial auricle to the inferior caval vein, using a Gore-Tex vascular graft with or without a fenestration. Concomitant procedures at the time of Fontan procedure included 22 pulmonary artery angioplasties, 21 atrial septectomies, 4 atrioventricular valve replacements or repairs, 4 corrections of anomalous pulmonary venous connection, and 3 permanent pacemaker implantations. In 31, a fenestration was created, and in 1 an adjustable communication was made in the lateral tunnel pathway. One lateral tunnel conversion was performed in a patient with recurrent intractable tachyarrhythmia 4 years after the initial atriopulmonary connection. Post-extubation hemodynamic data revealed a mean pulmonary artery pressure of 12.7(range 8 to 21) mmHg, a mean ventricular end-diastolic pressure of 7.6(range 4 to 12) mmHg, and a mean room-air arterial oxygen saturation of 89.9(range 68 to 100) %. The follow-up duration was, on average, 27(range 1 to 85) months. Post-Fontan complications included 11 prolonged pleural effusions, 8 arrhythmias, 9 chylothoraces, 5 of damage to the central nervous system, 5 infectious complications, and 4 of acute renal failure. Seven early(6.7%) and 5 late(4.8%) deaths occured. These results proved that the lateral tunnel Fontan procedure provided excellent hemodynamic improvements with acceptable mortality and morbidity for hearts with various types of functional single ventricle.

  • PDF

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.

Earthquake Resistance of Modular Building Units Using Load-Bearing Steel Stud Panels (내력벽식 스터드패널을 적용한 모듈러건물유닛의 내진성능)

  • Ha, Tae Hyu;Cho, Bong-Ho;Kim, Tae Hyeong;Lee, Doo Yong;Eom, Tae Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.519-530
    • /
    • 2013
  • Cyclic tests on modular building units for low-rise buildings composed of stud panels and a light-weight steel perimeter frame, were performed to evaluate the earthquake resistance such as stiffness, load-carrying capacity, ductility, and energy dissipation per load cycle. The strap-braced and sheeted stud panels were used as the primary lateral load-resistant element of the modular building units. Test results showed that the modular building units using the strap-braced and sheeted stud panels exhibited excellent post-yield ductile behaviors. The maximum drift ratios were greater than 5.37% and the displacement ductility ratios were greater than 5.76. However, the energy dissipation per load cycle was poor due to severe pinching during cyclic loading. Nominal strength, stiffness, and yield displacement of the modular building units were predicted based on plastic mechanisms. The predictions reasonably and conservatively correlated with the test results. However, the elastic stiffness of the strap-braced stud panel was significantly overestimated. For conservative design, the elastic stiffness of the strap-braced stud panel needs be decreased to 50% of the nominal value.

Effects of Dynamic Tubing Gait Training on Postural Alignment, Gait, and Quality of Life in Chronic Patients with Parkinson's Disease : Case Study (동적탄력튜빙 보행훈련 프로그램이 만성 파킨슨병 환자의 자세정렬과 보행능력과 삶의 질에 미치는 영향 : 사례연구)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.363-377
    • /
    • 2021
  • The present study investigated the effects of dynamic tubing gait training(I and II) on the postural alignment, gait, and quality of life in chronic patients with Parkinson's disease. This study is based on the case study that recruited a total of 3 patients with chronic Parkinson's disease (Hoehn and Yahr Stage of 1 to 3 each one person). Dynamic tubing gait training (I and II) applied to chronic patients with Parkinson's disease for 25 sessions, 30 minutes a day, 5 days a week, over 5 weeks period. To investigate the effects of this study, evaluating using the postural alignment test, muscle activity tests, gait analysis, and quality of life scale for patient with Parkinson's disease. After the intervention of Dynamic tubing gait training (I and II), Trunk flexion was decreased. Also, during walking from initial contact (IC) to mid stance (Mst), muscle activity of Quadriceps, Hamstring, and Tibialis Anterior (TA) was increased and muscle activity of Gastrocnemius was decreased. The muscle activation of Erector Spinae (ES T12, L3) was increased in the H&Y I and III stages and decreased in the H&Y II stage. Length of gait line, single support line, ant/post position and lateral symmetry of center of pressure (COP) parameters improved. The spatio-temporal gait parameters including of step length, stride length, and velocity was increased, and cadence decreased. Further the quality of life of patients with Parkinson's disease was improved. Based on these findings, Dynamic tubing gait training (I and II) could be applied as a new approach to improve posture, gait, quality of life in chronic patients with Parkinson's disease for more than 5 years, whose drug resistance is halved.