• Title/Summary/Keyword: Positive solutions

Search Result 750, Processing Time 0.034 seconds

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

EXISTENCE AND ITERATION OF MONOTONE POSITIVE SOLUTIONS FOR THIRD-ORDER THREE-POINT BVPS

  • Sun, Jian-Ping;Cao, Ke;Zhao, Ya-Hong;Wang, Xian-Qiang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.417-426
    • /
    • 2011
  • This paper is concerned with the existence of monotone positive solutions for a class of nonlinear third-order three-point boundary value problem. By applying iterative techniques, we not only obtain the existence of monotone positive solutions, but also establish iterative schemes for approximating the solutions. An example is also included to illustrate the importance of the results obtained.

TRIPLE POSITIVE SOLUTIONS OF SECOND ORDER SINGULAR NONLINEAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Sun, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.763-772
    • /
    • 2010
  • This paper deals with the existence of triple positive solutions for the nonlinear second-order three-point boundary value problem z"(t)+a(t)f(t, z(t), z'(t))=0, t $\in$ (0, 1), $z(0)={\nu}z(1)\;{\geq}\;0$, $z'(\eta)=0$, where 0 < $\nu$ < 1, 0 < $\eta$ < 1 are constants. f : [0, 1] $\times$ [0, $+{\infty}$) $\times$ R $\rightarrow$ [0, $+{\infty}$) and a : (0, 1) $\rightarrow$ [0, $+{\infty}$) are continuous. First, Green's function for the associated linear boundary value problem is constructed, and then, by means of a fixed point theorem due to Avery and Peterson, sufficient conditions are obtained that guarantee the existence of triple positive solutions to the boundary value problem. The interesting point is that the nonlinear term f is involved with the first-order derivative explicitly.

A NOTE ON APPROXIMATION OF SOLUTIONS OF A K-POSITIVE DEFINITE OPERATOR EQUATIONS

  • Osilike, M.O.;Udomene, A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.231-236
    • /
    • 2001
  • In this note we construct a sequence of Picard iterates suitable for the approximation of solutions of K-positive definite operator equations in arbitrary real Banach spaces. Explicit error estimate is obtained and convergence is shown to be as fast as a geometric progression.

  • PDF

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • In this paper, we consider singular 𝜑-Laplacian problems with nonlocal boundary conditions. Using a fixed point index theorem on a suitable cone, the existence results for one or two positive solutions are established under the assumption that the nonlinearity may not satisfy the L1-Carathéodory condition.

EXISTENCE OF THE THIRD POSITIVE RADIAL SOLUTION OF A SEMILINEAR ELLIPTIC PROBLEM ON AN UNBOUNDED DOMAIN

  • Ko, Bong-Soo;Lee, Yong-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.439-460
    • /
    • 2002
  • We prove the multiplicity of ordered positive radial solutions for a semilinear elliptic problem defined on an exterior domain. The key argument is to prove the existence of the third solution in presence of two known solutions. For this, we obtain some partial results related to three solutions theorem for certain singular boundary value problems. Proof are mainly based on the upper and lower solutions method and degree theory.