• 제목/요약/키워드: Positive resistivity temperature coefficient

검색결과 97건 처리시간 0.022초

액상소결(液狀燒結)한 SiC계(系)의 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Boride의 영향(影響) (Effects of Boride on Microstructure and Properties of the Electroconductive Ceramic Composites of Liquid-Phase-Sintered Silicon Carbide System)

  • 신용덕;주진영;고태헌
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1602-1608
    • /
    • 2007
  • The composites were fabricated, respectively, using 61[vol.%] SiC-39[vol.%] $TiB_2$ and using 61[vol.%] SiC-39[vol.%] $ZrB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the Liquid-Phase-Sintered(LPS) $SiC-TiB_2$, and $SiC-ZrB_2$ composite. $\beta\rightarrow\alpha-SiC$ phase transformation was occurred on the $SiC-TiB_2$ and $SiC-ZrB_2$ composite. The relative density, the flexural strength and Young's modulus showed the highest value of 98.57[%], 249.42[MPa] and 91.64[GPa] in $SiC-ZrB_2$ composite at room temperature respectively. The electrical resistivity showed the lowest value of $7.96{\times}10^{-4}[\Omega{\cdot}cm]$ for $SiC-ZrB_2$ composite at $25[^{\circ}C]$. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all positive temperature coefficient resistance (PTCR) in the temperature ranges from $25[^{\circ}C]$ to $700[^{\circ}C]$. The resistance temperature coefficient of composite showed the lowest value of $1.319\times10^{-3}/[^{\circ}C]$ for $SiC-ZrB_2$ composite in the temperature ranges from $100[^{\circ}C]$ to $300[^{\circ}C]$ Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

무연 BaTiO3-(Bi0.5K0.5)TiO3 PTCR 세라믹과 PTCR 특성에 미치는 Nb2O5의 효과 (Lead-free BaTiO3-(Bi0.5K0.5)TiO3 PTCR Ceramics and Effects of Nb2O5 on Its PTCR Characteristics)

  • 정영훈;박용준;이미재;이영진;백종후;최진수;이우영
    • 한국재료학회지
    • /
    • 제18권9호
    • /
    • pp.475-481
    • /
    • 2008
  • Positive temperature coefficient of resistivity (PTCR) characteristics of (1-x)$BaTiO_3-x(Bi_{0.5}K_{0.5})TiO_3$ ceramics doped with $Nb_2O_5$ were investigated in order to develop the Pb-free PTC thermistor available at high temperatures of > $120^{\circ}C$. The PTCR characteristics appearing in the ($B_{i0.5}K_{i0.5})TiO_3$ (< 5 mol%) incorporated $BaTiO_3$ ceramics, which might be mainly due to $Bi^{+3}$ ions substituting for $Ba^{+2}$ sites. The 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics showed good PTCR characteristics of a low resistivity at room temperature (${\rho}_r$) of $31{\Omega}{\cdot}cm$ a high ${\rho}_{max}/{\rho}_{min}$ ratio of $5.38{\times}10^3$, and a high resistivity temperature factor (${\alpha}$) of $17.8%/^{\circ}C$. The addition of $Nb_2O_5$ to 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics further improved the PTCR characteristics. Especially, 0.025 mol% $Nb_2O_5$ doped 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics exhibited a significantly increased ${\rho}_{max}/{\rho}_{min}$ ratio of $8.7{\times}10^3$ and a high ${\alpha}$ of $18.6%/^{\circ}C$, along with a high $T_c$ of $148^{\circ}C$ despite a slightly increased ${\rho}_r$ of $31{\Omega}{\cdot}cm$.

수정합성공정에 의한 무연 (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) 세라믹의 PTCR 특성 연구 (Investigation on PTCR Characteristics of (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) Ceramics by Modified Synthesis Process)

  • 김경범;김창일;정영훈;이영진;백종후;이우영;김대준
    • 한국전기전자재료학회논문지
    • /
    • 제23권12호
    • /
    • pp.929-935
    • /
    • 2010
  • $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.01{\leq}x{\leq}0.10$) ceramics were fabricated with muffled sintering by a modified synthesis process. Their positive temperature coefficient of resistivity (PTCR) characteristics were investigated systematically. All specimen showed a perovskite structure with a tetragonal symmetry. Both the lattice parameter of a and c axes were slightly decreased with increasing $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) content. Grain growth was achieved when the incorporated BNT was increased to 6 mol% and the inhibition of grain growth is considered to be due to the appearance of Ba vacancy ($V^{"}_{Ba}$) in the $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.08{\leq}x$). With 4 mol% BNT addition, room temperature resistivity decreased to $48 \Omega{\cdot}cm$ and a resistivity jump ($\rho_{max}/\rho_{min}$) was as high as $1.1{\times}10^4$, respectively. Curie temperature was also increased to $171^{\circ}C$ with increasing BNT content.

도전성 ${\beta}-SiC-TiB_2$ 복합체의 특성 (Properties of Electro-Conductive SiC-TiB2 Composites)

  • 신용덕;박미림;송준태;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.72-75
    • /
    • 2000
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering were investigated, The ${\beta}-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 4, 8, 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 97% of the theoretical density and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. But the fracture toughness showed the highest of $7.0MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest of $1.59\times10^{-3}\Omega{\cdot}cm$ for composite added with 8wt% $Al_2O_3+Y_2O_3$ additives at room temperature and is all positive temperature coefficient resistance(PTCR} against temperature up to $700^{\circ}C$.

  • PDF

액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성 (Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering)

  • 신용덕;주진영;박미림;소병문;임승혁;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

신축성을 가진 Carbon/PDMS 복합체의 센서 응용 연구 (Flexible Carbon/PDMS Composite for the Application of Sensor)

  • 이준호;박경열;민성욱
    • 마이크로전자및패키징학회지
    • /
    • 제28권4호
    • /
    • pp.73-77
    • /
    • 2021
  • 신체 착용 및 부착이 가능한 웨어러블 기기용 유연 전극은 외력에 대한 기계적/전기적 내구성을 확보하고 동시에, 다양한 기능성을 부여하는 방향으로 연구가 활발히 진행되고 있다. 본 연구는 Carbon black를 전도성 필러로 적용하여 Carbon/PDMS 기반 유연 복합체를 제조하고 carbon black의 함량에 따른 복합체의 유연전극, 온도 센서 및 히터용 소재로서의 적용 가능성에 대해 고찰해 보았다. Carbon black의 함량 증가에 따른 비저항 감소를 관찰하였고, 반복인장에 따른 전기저항 변화율 실험을 통해 유연전극으로서의 적용 가능성을 확인하였다. 온도 변화에 따른 carbon/PDMS 복합체의 전기적 특성 평가를 통해 온도센서로서 적용이 가능한 정온도계수 특성을 관찰하였고, carbon black 함량에 따라 정온도계수 특성 조절이 가능함을 확인할 수 있었다. 전압 인가에 따른 Carbon/PDMS 복합체의 발열 특성 관찰을 통해 히터용 소재로서의 적용가능성 역시 확인할 수 있었다.

$\beta$-Sic-$ZrB_2$계 복합체에 미치는 YAG의 영향 (Effect of YAG on $\beta$-Sic-$ZrB_2$ Composites)

  • 황철;주진영;신용덕;이종덕;진홍범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1474-1476
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$ZrB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $ZrB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents. The flexural strength showed the highest value of 390.6MPa for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. Owing to crack deflection, crack bridging. phase transition and YAG of fracture toughness mechanism. the fracture toughness showed the highest value of 6.3MPa${\cdot}m^{1/2}$ for composites added with 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of 25$^{\circ}C$ to 900$^{\circ}C$.

  • PDF

Na 및 K 치환에 따른 BaTiO3의 Positive Temperature Coefficient Resistor 특성 (Properties of the Positive Temperature Coefficient Resistor Behavior on the Na and K Doped BaTiO3)

  • 이미재;임태영;김세기;황종희;김진호;서원선
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.654-660
    • /
    • 2010
  • The influences of Na and K content on the crystal phase, the microstructure and the electrical property of $BaTiO_3$-based thermistors was found to show typical PTC effects. The crystal phase of powder calcined at $1000^{\circ}C$ for 4hrs showed a single phase with $BaTiO_3$, and the crystal structure was transformed from tetragonal to cubic phase according to added amounts of Na and K. In XRD results at $43^{\circ}\sim47^{\circ}$, the $(Ba_{0.858}Na_{0.071}K_{0.071})(Ti_{0.9985}Nb_{0.0015})O_{3-\delta}$ showed (002) and (200) peaks but the $(Ba_{0.762}Na_{0.119}K_{0.119})(Ti_{0.9975}Nb_{0.0025})O_{3-\delta}$ showed (002), (020) and (200) peaks. In sintered bodies, those calcined at $600^{\circ}C$ rather than at $1000^{\circ}C$ were dense, and for certain amounts of Na and K showed rapid decreases in grain size. In relative permittivity, the curie temperature due to the transformation of ferroelectric phase rose with added Na and K but decreased in terms of relative permittivity. In the result of the R-T curve, the sintered bodies have curie temperatures of about $140^{\circ}C$ and the resistivity of sintered bodies have scores of $\Omega{\cdot}cm$; the jump order of sintered bodies was shown to be more than $10^4$ in powder calcined at $1000^{\circ}C$.

균일침전법으로 제조된 란탄이 혼입된 $BaTiO_3$의 전기적 특성 (Electrical properties of La-doped BaTiO3 synthesized by homogeneous precipitation)

  • 허우영;류경열;김승원;이철
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.498-503
    • /
    • 1999
  • La가 혼입된 $BaTiO_3$를 균일침전법으로 제조하여 La의 혼입량 및 입자의 크기 변화에 따른 전기적 특성을 관찰하였다. 온도변화에 따른 저항을 측정한 결과 란탄의 농도가 0.6 mol%일 때 그리고 입자의 크기가 1.0 $\mu\textrm{m}$으로 작을 때 가장 큰 PTCR 효과를 나타내었다. 상전이온도($(T_c)$) 이상에서 온도와 1/$\varepsilon_m$(T)의 관계를 나타낸 도시에 의하면 유전상수의 변화가 Curie-weiss 법칙에 잘 다름을 알 수 있었다. 측정한 비저항과 유전상수로부터 계산한 전위장벽의 높이도 란탄의 농도가 0.6 mol%일 때 입자의 크기가 1.0$\mu\textrm{m}$으로 작을 때 가장 큰 전위장벽을 나타내었다.

  • PDF