• Title/Summary/Keyword: Positive Computing

Search Result 247, Processing Time 0.029 seconds

A Study on Availabilities of Self-evaluation and Peer-evaluation of Team Activities in Computer Science Basic Classes (컴퓨터학부 기초전공 수업에서 팀 활동에 대한 자기평가와 동료평가의 활용성 연구)

  • Cho, Soosun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • In this paper, availabilities of student-evaluations of team activities in the computer science basic classes were analysed. For the purpose, correlation analysis was conducted to investigate the relationships among peer-evaluation, self-evaluation, and academic achievement, and it was found that there was a statistically significant positive correlation among them. Moreover, the gap between peer-evaluation scores and self-evaluation scores was analyzed. When a one-sample t-test was performed, it was found that the gap was very significant. However, the size of the gap was not different between the two classes. That is, regardless of grade level, the students' self-evaluation scores tended to be on average higher than the evaluation scores received from peers. Finally, when analyzing the relationship between the gap in peer-evaluation and self-evaluation scores and academic achievement, there was no significant correlation between the gap in scores and academic achievement. In other words, there was no difference in the tendency of evaluation for students with high or low academic achievement. The results of the analysis shows the availability of student-evaluations of team activities in the evaluation of team-based instruction. The high correlation between self-evaluation and peer-evaluation indicates the objectivity of student-evaluation. Although it is clear that the self-evaluation score is higher on average than the score received from peers, it is more useful in terms of objectivity because it does not vary according to grade, subject, or academic achievement.

TGC-based Fish Growth Estimation Model using Gaussian Process Regression Approach (가우시안 프로세스 회귀를 통한 열 성장 계수 기반의 어류 성장 예측 모델)

  • Juhyoung Sung;Sungyoon Cho;Da-Eun Jung;Jongwon Kim;Jeonghwan Park;Kiwon Kwon;Young Myoung Ko
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2023
  • Recently, as the fishery resources are depleted, expectations for productivity improvement by 'rearing fishery' in land farms are greatly rising. In the case of land farms, unlike ocean environments, it is easy to control and manage environmental and breeding factors, and has the advantage of being able to adjust production according to the production plan. On the other hand, unlike in the natural environment, there is a disadvantage in that operation costs may significantly increase due to the artificial management for fish growth. Therefore, profit maximization can be pursued by efficiently operating the farm in accordance with the planned target shipment. In order to operate such an efficient farm and nurture fish, an accurate growth prediction model according to the target fish species is absolutely required. Most of the growth prediction models are mainly numerical results based on statistical analysis using farm data. In this paper, we present a growth prediction model from a stochastic point of view to overcome the difficulties in securing data and the difficulty in providing quantitative expected values for inaccuracies that existing growth prediction models from a statistical point of view may have. For a stochastic approach, modeling is performed by introducing a Gaussian process regression method based on water temperature, which is the most important factor in positive growth. From the corresponding results, it is expected that it will be able to provide reference values for more efficient farm operation by simultaneously providing the average value of the predicted growth value at a specific point in time and the confidence interval for that value.

An Exploratory Study on the Trustworthiness Analysis of Generative AI (생성형 AI의 신뢰도에 대한 탐색적 연구)

  • Soyon Kim;Ji Yeon Cho;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2024
  • This study focused on user trust in ChatGPT, a generative AI technology, and explored the factors that affect usage status and intention to continue using, and whether the influence of trust varies depending on the purpose. For this purpose, the survey was conducted targeting people in their 20s and 30s who use ChatGPT the most. The statistical analysis deploying IBM SPSS 27 and SmartPLS 4.0. A structural equation model was formulated on the foundation of Bhattacherjee's Expectation-Confirmation Model (ECM), employing path analysis and Multi-Group Analysis (MGA) for hypothesis validation. The main findings are as follows: Firstly, ChatGPT is mainly used for specific needs or objectives rather than as a daily tool. The majority of users are cognizant of its hallucination effects; however, this did not hinder its use. Secondly, the hypothesis testing indicated that independent variables such as expectation- confirmation, perceived usefulness, and user satisfaction all exert a positive influence on the dependent variable, the intention for continuance intention. Thirdly, the influence of trust varied depending on the user's purpose in utilizing ChatGPT. trust was significant when ChatGPT is used for information retrieval but not for creative purposes. This study will be used to solve reliability problems in the process of introducing generative AI in society and companies in the future and to establish policies and derive improvement measures for successful employment.

A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach (모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석)

  • Soyon Kim;Ji Yeon Cho;Sang-Yeol Park;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 2024
  • This study aims to contribute to the initial research on on-device AI in an environment where generative AI-based services on mobile and other on-device platforms are increasing. To derive success strategies for generative AI-based chatbot services in a mobile environment, over 200,000 actual user experience review data collected from the Google Play Store were analyzed using the LDA topic modeling technique. Interpreting the derived topics based on the Information System Success Model (ISSM), the topics such as tutoring, limitation of response, and hallucination and outdated informaiton were linked to information quality; multimodal service, quality of response, and issues of device interoperability were linked to system quality; inter-device compatibility, utility of the service, quality of premium services, and challenges in account were linked to service quality; and finally, creative collaboration was linked to net benefits. Humanization of generative AI emerged as a new experience factor not explained by the existing model. By explaining specific positive and negative experience dimensions from the user's perspective based on theory, this study suggests directions for future related research and provides strategic insights for companies to improve and supplement their services for successful business operations.

Fine-tuning BERT-based NLP Models for Sentiment Analysis of Korean Reviews: Optimizing the sequence length (BERT 기반 자연어처리 모델의 미세 조정을 통한 한국어 리뷰 감성 분석: 입력 시퀀스 길이 최적화)

  • Sunga Hwang;Seyeon Park;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.47-56
    • /
    • 2024
  • This paper proposes a method for fine-tuning BERT-based natural language processing models to perform sentiment analysis on Korean review data. By varying the input sequence length during this process and comparing the performance, we aim to explore the optimal performance according to the input sequence length. For this purpose, text review data collected from the clothing shopping platform M was utilized. Through web scraping, review data was collected. During the data preprocessing stage, positive and negative satisfaction scores were recalibrated to improve the accuracy of the analysis. Specifically, the GPT-4 API was used to reset the labels to reflect the actual sentiment of the review texts, and data imbalance issues were addressed by adjusting the data to 6:4 ratio. The reviews on the clothing shopping platform averaged about 12 tokens in length, and to provide the optimal model suitable for this, five BERT-based pre-trained models were used in the modeling stage, focusing on input sequence length and memory usage for performance comparison. The experimental results indicated that an input sequence length of 64 generally exhibited the most appropriate performance and memory usage. In particular, the KcELECTRA model showed optimal performance and memory usage at an input sequence length of 64, achieving higher than 92% accuracy and reliability in sentiment analysis of Korean review data. Furthermore, by utilizing BERTopic, we provide a Korean review sentiment analysis process that classifies new incoming review data by category and extracts sentiment scores for each category using the final constructed model.

Automatic Text Extraction from News Video using Morphology and Text Shape (형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출)

  • Jang, In-Young;Ko, Byoung-Chul;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.479-488
    • /
    • 2002
  • In recent years the amount of digital video used has risen dramatically to keep pace with the increasing use of the Internet and consequently an automated method is needed for indexing digital video databases. Textual information, both superimposed and embedded scene texts, appearing in a digital video can be a crucial clue for helping the video indexing. In this paper, a new method is presented to extract both superimposed and embedded scene texts in a freeze-frame of news video. The algorithm is summarized in the following three steps. For the first step, a color image is converted into a gray-level image and applies contrast stretching to enhance the contrast of the input image. Then, a modified local adaptive thresholding is applied to the contrast-stretched image. The second step is divided into three processes: eliminating text-like components by applying erosion, dilation, and (OpenClose+CloseOpen)/2 morphological operations, maintaining text components using (OpenClose+CloseOpen)/2 operation with a new Geo-correction method, and subtracting two result images for eliminating false-positive components further. In the third filtering step, the characteristics of each component such as the ratio of the number of pixels in each candidate component to the number of its boundary pixels and the ratio of the minor to the major axis of each bounding box are used. Acceptable results have been obtained using the proposed method on 300 news images with a recognition rate of 93.6%. Also, my method indicates a good performance on all the various kinds of images by adjusting the size of the structuring element.

Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models (BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발)

  • Park, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • Sentiment Analysis (SA) is a Natural Language Processing (NLP) task that analyzes the sentiments consumers or the public feel about an arbitrary object from written texts. Furthermore, Aspect-Based Sentiment Analysis (ABSA) is a fine-grained analysis of the sentiments towards each aspect of an object. Since having a more practical value in terms of business, ABSA is drawing attention from both academic and industrial organizations. When there is a review that says "The restaurant is expensive but the food is really fantastic", for example, the general SA evaluates the overall sentiment towards the 'restaurant' as 'positive', while ABSA identifies the restaurant's aspect 'price' as 'negative' and 'food' aspect as 'positive'. Thus, ABSA enables a more specific and effective marketing strategy. In order to perform ABSA, it is necessary to identify what are the aspect terms or aspect categories included in the text, and judge the sentiments towards them. Accordingly, there exist four main areas in ABSA; aspect term extraction, aspect category detection, Aspect Term Sentiment Classification (ATSC), and Aspect Category Sentiment Classification (ACSC). It is usually conducted by extracting aspect terms and then performing ATSC to analyze sentiments for the given aspect terms, or by extracting aspect categories and then performing ACSC to analyze sentiments for the given aspect category. Here, an aspect category is expressed in one or more aspect terms, or indirectly inferred by other words. In the preceding example sentence, 'price' and 'food' are both aspect categories, and the aspect category 'food' is expressed by the aspect term 'food' included in the review. If the review sentence includes 'pasta', 'steak', or 'grilled chicken special', these can all be aspect terms for the aspect category 'food'. As such, an aspect category referred to by one or more specific aspect terms is called an explicit aspect. On the other hand, the aspect category like 'price', which does not have any specific aspect terms but can be indirectly guessed with an emotional word 'expensive,' is called an implicit aspect. So far, the 'aspect category' has been used to avoid confusion about 'aspect term'. From now on, we will consider 'aspect category' and 'aspect' as the same concept and use the word 'aspect' more for convenience. And one thing to note is that ATSC analyzes the sentiment towards given aspect terms, so it deals only with explicit aspects, and ACSC treats not only explicit aspects but also implicit aspects. This study seeks to find answers to the following issues ignored in the previous studies when applying the BERT pre-trained language model to ACSC and derives superior ACSC models. First, is it more effective to reflect the output vector of tokens for aspect categories than to use only the final output vector of [CLS] token as a classification vector? Second, is there any performance difference between QA (Question Answering) and NLI (Natural Language Inference) types in the sentence-pair configuration of input data? Third, is there any performance difference according to the order of sentence including aspect category in the QA or NLI type sentence-pair configuration of input data? To achieve these research objectives, we implemented 12 ACSC models and conducted experiments on 4 English benchmark datasets. As a result, ACSC models that provide performance beyond the existing studies without expanding the training dataset were derived. In addition, it was found that it is more effective to reflect the output vector of the aspect category token than to use only the output vector for the [CLS] token as a classification vector. It was also found that QA type input generally provides better performance than NLI, and the order of the sentence with the aspect category in QA type is irrelevant with performance. There may be some differences depending on the characteristics of the dataset, but when using NLI type sentence-pair input, placing the sentence containing the aspect category second seems to provide better performance. The new methodology for designing the ACSC model used in this study could be similarly applied to other studies such as ATSC.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

A Study of the Environmental Consciousness Influences on the Psychological Reaction of Forest Ecotourists (환경의식에 따른 산림생태관광객의 심리적 반응에 관한 연구)

  • Yan, Guang-Hao;Na, Seung-Hwa
    • Journal of Distribution Science
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • With the slowdown in environmental issues and the change of environmental consciousness, ecotourism is being discussed in various social fields. Ecotourism is being popularized for environmental protection, and now it is becoming a mainstream product from one of mass tourism. Ecotourism's emphasis on sustainable development in the tourism destination's society, economy, and environment, through ecotourism study and education, enable people to understand the core value of the ecological environment. 2011 was nominated as "the Year of World Forest" by the UN. In the recent years, forests are becoming increasingly important with their own values and functions in environment, economy, society, and culture. In particular, the global environmental issues caused by climate change are becoming an international agenda. Forests are the only effective solution for the carbon dioxide that causes global warming. Moreover, forests constitute a major part of ecotourism, and are now most used by ecotourists. For example, Korea, wherein 60% of the land is forest, attracts ecotourists. With the increasing interests in environment, the number of tourists visiting the ecosystem forest, which is highly valued for its conservation, is increasing significantly every year and is receiving considerable attention from the government. However, poor facilities in the forest ecotourism sites and improper market strategies are the reasons for the poor running of these sites. Furthermore, tourists' environmental awareness affects ecology environmental pollution or the optimization of forest ecotourism. In order to verify the relationships among tourist attractiveness, environmental consciousness, charm degrees of the attractions, and attitudes after tours, we established some scales based on existing research achievement. Then, using these scales, the researcher completed the questionnaire survey. From December 20, 2010 to February 20, 2011, after conducting surveys for 12 weeks, we finally obtained 582 valid questionnaires, from a total of 700 questionnaires, that could be used in statistical analysis. First, for the method of research and analysis, the researcher initially applied the Cronbach's (Alpha) for verifying the reliability, and subsequently applied the Exploratory factor analysis for verifying the validity. Second, in order to analyze the demographics, the researcher makes use of the Frequency analysis for the AMOS, measurement model, structural equation model computing, and also utilizes construct validity, convergent validity, discriminant validity, and nomological validity. Third, for the analysis of the ecotourists' environmental consciousness, impacts on tourist attractiveness, charm degrees of the attractions, and attitudes after the tour, the researcher uses AMOS 19, with the path analysis and equation of structure. After the research, researchers found that high awareness of natural protection lead to high tourist motivation and satisfaction and more positive attitude after the tour. Moreover, this research shows the psychological and behavioral reactions of the ecotourists to the ecotourist development. Accordingly, environmental consciousness does not affect the tourist attractiveness that has been interpreted as significant. Furthermore, people should focus on the change of natural protection consciousness and psychological reaction of ecotourists while ensuring the sustainable development of ecotourists and developing some ecotourist programs.

  • PDF

An Empirical Study on the Influencing Factors of Perceived Job Performance in the Context of Enterprise Mobile Applications (업무성과에 영향을 주는 업무용 모바일 어플리케이션의 주요 요인에 관한 연구)

  • Chung, Sunghun;Kim, Kimin
    • Asia pacific journal of information systems
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2014
  • The ubiquitous accessibility of information through mobile devices has led to an increased mobility of workers from their fixed workplaces. Market researchers estimate that by 2016, 350 million workers will be using their smartphones for business purposes, and the use of smartphones will offer new business benefits. Enterprises are now adopting mobile technologies for numerous applications to increase their operational efficiency, improve their responsiveness and competitiveness, and cultivate their innovativeness. For these reasons, various organizational aspects concerning "mobile work" have received a great deal of recent attention. Moreover, many CIOs plan to allocate a considerable amount of their budgets mobile work environments. In particular, with the consumerization of information technology, enterprise mobile applications (EMA) have played a significant role in the explosive growth of mobile computing in the workplace, and even in improving sales for firms in this field. EMA can be defined as mobile technologies and role-based applications, as companies design them for specific roles and functions in organizations. Technically, EMA can be defined as business enterprise systems, including critical business functions that enable users to access enterprise systems via wireless mobile devices, such as smartphones or tablets. Specifically, EMA enables employees to have greater access to real-time information, and provides them with simple features and functionalities that are easy for them to complete specific tasks. While the impact of EMA on organizational workers' productivity has been given considerable attention in various literatures, relatively little research effort has been made to examine how EMA actually lead to users' job performance. In particular, we have a limited understanding of what the key antecedents are of such an EMA usage outcome. In this paper, we focus on employees' perceived job performance as the outcome of EMA use, which indicates the successful role of EMA with regard to employees' tasks. Thus, to develop a deeper understanding of the relationship among EMA, its environment, and employees' perceived job performance, we develop a comprehensive model that considers the perceived-fit between EMA and employees' tasks, satisfaction on EMA, and the organizational environment. With this model, we try to examine EMA to explain how job performance through EMA is revealed from both the task-technology fit for EMA and satisfaction on EMA, while also considering the antecedent factors for these constructs. The objectives of this study are to address the following research questions: (1) How can employees successfully manage EMA in order to enhance their perceived job performance? (2) What internal and/or external factors are important antecedents in increasing EMA users' satisfaction on MES and task-technology fit for EMA? (3) What are the impacts of organizational (e.g. organizational agility), and task-related antecedents (e.g., task mobility) on task-technology fit for EMA? (4) What are the impacts of internal (e.g., self-efficacy) and external antecedents (e.g., system reputation) for the habitual use of EMA? Based on a survey from 254 actual employees who use EMA in their workplace across industries, our results indicate that task-technology fit for EMA and satisfaction on EMA are positively associated with job performance. We also identify task mobility, organizational agility, and system accessibility that are found to be positively associated with task-technology fit for EMA. Further, we find that external factor, such as the reputation of EMA, and internal factor, such as self-efficacy for EMA that are found to be positively associated with the satisfaction of EMA. The present findings enable researchers and practitioners to understand the role of EMA, which facilitates organizational workers' efficient work processes, as well as the importance of task-technology fit for EMA. Our model provides a new set of antecedents and consequence variables for a TAM involving mobile applications. The research model also provides empirical evidence that EMA are important mobile services that positively influence individuals' performance. Our findings suggest that perceived organizational agility and task mobility do have a significant influence on task-technology fit for EMA usage through positive beliefs about EMA, that self-efficacy and system reputation can also influence individuals' satisfaction on EMA, and that these factors are important contingent factors for the impact of system satisfaction and perceived job performance. Our findings can help managers gauge the impact of EMA in terms of its contribution to job performance. Our results provide an explanation as to why many firms have recently adopted EMA for efficient business processes and productivity support. Our findings additionally suggest that the cognitive fit between task and technology can be an important requirement for the productivity support of EMA. Further, our study findings can help managers in formulating their strategies and building organizational culture that can affect employees perceived job performance. Managers, thus, can tailor their dependence on EMA as high or low, depending on their task's characteristics, to maximize the job performance in the workplace. Overall, this study strengthens our knowledge regarding the impact of mobile applications in organizational contexts, technology acceptance and the role of task characteristics. To conclude, we hope that our research inspires future studies exploring digital productivity in the workplace and/or taking the role of EMA into account for employee job performance.