• Title/Summary/Keyword: Positioning stages

Search Result 59, Processing Time 0.025 seconds

Modeling and Countermeasure for Positioning Stage Base Vibration (위치결정 스테이지 베이스 진동 모델링 및 저감기법 개발)

  • Park, Ah-Yeong;Lim, Jae-Gon;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.476-484
    • /
    • 2010
  • Precise positioning stages are often employed for precise machinery. For the purpose of vibration isolation, these precise positioning stages are mounted on a heavy base structure which is supported by compliant springs. Then the base structure is subjected to residual vibration due to the reactive force and vertical moving load induced by the stage motion. This paper investigates the vibration behavior of a positioning stage base and the associated vibration suppression technique. A dynamic model is developed to investigate the base vibration due to the reactive force and moving load effects by the moving stage. An input shaping technique is also developed to suppress the residual vibrations in base structures. Simulations and experiments show that the developed dynamic model adequately represents the base vibration and that the proposed input shaping technique effectively removes the residual vibrations from the positioning stage base.

Residual Vibration Reduction of Precise Positioning Stage Using Virtual-Mode Based Input Shapers (가상모드 입력성형기를 이용한 위치결정 스테이지 잔류진동 저감)

  • Seo, Yong-Gyu;Jang, Joon-Won;Hong, Seong-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.255-260
    • /
    • 2009
  • This paper presents an experimental result of virtual mode input shaping for positioning stage. Input shaping is liable to increase the rise time of the system, which often degrades the performance of system. The virtual mode input, shaping is an input shaper design method to improve this problem. Experiments are performed with a precise positioning stage with a flexible beam of which natural frequency is adjustable. The experimental results show that the virtual-mode shaper is useful to reduce the rise time as well as the residual vibration of precise positioning stages.

  • PDF

The Study of Error Compensation for Repeatability Improvement of Precision Positioning System

  • Lee, Woogeun;Changsoo Han;Park, Hyeunseok;Lee, Kyeyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.6-66
    • /
    • 2001
  • In this paper, we studied the error compensation using an error budget method for repeatability improvement of the precision positioning system. The precision positioning system is developed for micro-pressing machine. We performed the force and displacement analysis about parts of the system. Proposed system determines the position and orientation of the materials manufactured by micro-pressing machine. It is consisted of x-y-z linear stages setting the position, and the gripper system setting the orientation. We executed kinematic and dynamic modeling of the whole precision positioning system. By generalizing the design variables, precision positioning system has the flexibility of material dimension. As we tried an error compensation using ...

  • PDF

Command Generation Method for High-Speed and Precise Positioning of Positioning Stage (위치결정 스테이지의 고속 정밀 위치결정을 위한 입력성형명령 생성 기법)

  • Jang, Joon-Won;Park, Sang-Won;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.122-129
    • /
    • 2008
  • This paper deals with precise positioning of a high-speed positioning stage without inducing residual vibration by using an input shaping technique. Input shaping is well known to be a very effective tool for suppressing the residual vibration of flexible structures. However, the ordinary input shaping for positioning stages is designated mostly for velocity regulation, not for the residual vibration at the target position. The main difficulties in implementing input shaping along with precise positioning are the time delay caused by the servo system characteristics and the s-curve feature often employed in some motor controllers. This paper analyzes the dynamic responses of a single-mode-dominate stage system subjected to input shaping. A theoretical model is developed io investigate the nature of system. In order to overcome the difficulty, this paper proposes an improved input shaper based on modified command profile generation. The proposed method is proved effective through experiments and simulations.

Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation (압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

A Position Decision of Photo Sensor using a PZT Nano Positioning Stage (PZT 나노 스테이지를 이용한 광센서의 위치결정)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.271-275
    • /
    • 2016
  • For machining systems like the motor driven linear stage which have high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though piezo (PZT) actuator driven linear stages have high precision feed drivers and a short stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study was performed to examine the repeatability for home position decision of a EE-SX671 photo sensor as a home switch by using piezo actuator driven linear stages and capacitance probe.

Positioning control error of 2-Axis Stage for Diamond Turning Machine (DTM가공을 위한 2축 Stage의 정밀 이송특성연구)

  • Lee E.S.;Park J.J.;Lee M.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.309-312
    • /
    • 2005
  • DTM (Diamond Turning Machine) is using for ultra precision manufacturing such as, plastic lens die or aspherical optics. This study is on a design of precision 2-axis stage for DTM. We designed and manufactured a back lash free stage using different weights and measured the positioning accuracy using Interferometer. Also, the 2-D moving accuracy is measured using the high magnification CCD technique. Then, the stage is tested with the machining of spherical and aspherical lens in a DTM with air bearing spindle. It was shown that the back lash free stage is effective for improving the positioning accuracy. Also, positioning control errors in motion control board were able to be found using the proposed stages system.

  • PDF

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF

Fabrication of Piezo-Driven Micropositioning Stage using 3D printer (3D 프린터를 사용한 정밀 스테이지의 제작)

  • Jung, Ho Je;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2014
  • This paper presents the design, optimization and fabrication of a piezo driven micro-positioning stage constructed using a 3D-printer. 3D printing technology provides many advantageous aspects in comparison to traditional manufacturing techniques allowing more rapid prototyping freedom in design, etc. Micro-positioning stages have traditionally been made using metal materials namely aluminum. This paper investigates the possibility of fabricating stages using ABS material with a 3D printer. CAE simulations show that equivalent motion amplification can be achieved compared to a traditional aluminum fabricated stage while the maximum stress is 30 times less. This leads to the possibility of stages with higher magnification factors and less load on the driving piezo element. Experiment results agree with the simulation results. A micro-position stage was fabricated using a 3D printer with ABS material. The motion amplification is very linear and 50 nm stepping was demonstrated.