• Title/Summary/Keyword: Positioning Precision

Search Result 820, Processing Time 0.024 seconds

Development and Validation of an Integrated GNSS Simulator Using 3D Spatial Information (3차원 공간정보를 이용한 통합 GNSS 시뮬레이터 개발 및 검증)

  • Kim, Hye-In;Park, Kwan-Dong;Lee, Ho-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.659-667
    • /
    • 2009
  • In this study, an integrated GNSS Simulator called Inha GNSS Simulation System (IGSS) using 3D spatial information was developed and validated. Also positioning availability and accuracy improvement were evaluated under the integrated GNSS environment using IGSS. GPS and GLONASS satellite visibility predictions were compared with real observations, and their frequency of error were 6.4% and 7.5%, respectively. To evaluate positioning availability and accuracy improvement under the integrated GNSS environment, the Daejeon government complex area was selected to be the test site because the area has high-rise buildings and thus is susceptible to signal blockages. The test consists of three parts: the first is when only GPS was used; the second is when both GPS and GLONASS were simulated; and the last is when GPS, GLONASS, and Galileo were used all together. In each case, the number of visible satellites and Dilution Of Precision were calculated and compared.

Impact of Tropospheric Modeling Schemes into Accuracy of Estimated Ellipsoidal Heights by GPS Baseline Processing: Experimental Analysis and Results (GPS 기선해석에 의한 타원체고 추정에서 대류권 오차 보정기법이 정확도에 미치는 영향에 관한 실험적 분석)

  • Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.245-254
    • /
    • 2018
  • Impact of tropospheric correction techniques on accuracy of the GPS (Global Positioning System) derived ellipsoidal heights has been experimentally assessed in this paper. To this end, 247 baselines were constructed from a total of 88 CORS (Continuously Operating Reference Stations) in Korea. The GPS measurements for seven days, acquired from the so-called integrated GNSS (Global Navigation Satellite Systems) data center via internet connection, have been processed by two baseline processing software packages with an application of the empirical models, such as Hopfield, modified Hopfield and Saastamoinen, and the estimation techniques based on the DD (Double-Differenced) measurements and the PPP (Precise Point Positioning) technique; hence a total number of the baseline processed and tested was 8,645. Accuracy and precision of the estimated heights from the various correction schemes were analyzed about baseline lengths and height differences of the testing baselines. Details of these results are summarized with a view to hopefully providing an overall guideline of a suitable selection of the modeling scheme with respect to processing conditions, such as the baseline length and the height differences.

Global Positioning System and Strengthening of Geodetic Network of Nepal

  • Adhikary, Krishna Raj;Mahara, Shree Prakash
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.955-958
    • /
    • 2003
  • Nepal is a country of mountains The higher order geodetic points were mostly established on the top of mountains and these points were used for the geodetic network extension. Lower order geodetic control networks were established at different times and used for the surveying and mapping activities of the country.. It has been found that the rate of convergence between north and south borders of Nepal to be 21${\pm}$2 mm each year and the rate translation of Kathmandu to 55${\pm}$3 mm/year to the plates. The most intense deformation in Nepal occurs along the belt of high mountains along its northern border res ulting in a strain contraction rate normal to the Himalayan Arc. This belt is approximately 40 km wide and extends into southern Tibet.( 13). Recently Survey Department of Nepal has lunched a program of strengthening the existing geodetic network of Nepal and re-observed the position of higher order geodetic points by using geodetic GPS receivers to evaluate their position and thus to define the precision of the control points once again. This paper describes the observation procedure and the adjustment results of the existing higher order control network of Nepal established in different time using different types of equipment and techniques; and highlights the observation procedure and the result obtained after the post processing of the GPS observation results. Attempt has been made to give the procedure and identify the methodology for the re observation of existing higher order geodetic points by using GPS receiver and post processing the observed data so that the existing higher order geodetic points are within the given accuracy standard.

  • PDF

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

Development of Optimized Headland Turning Mechanism on an Agricultural Robot for Korean Garlic Farms

  • Ha, JongWoo;Lee, ChangJoo;Pal, Abhishesh;Park, GunWoo;Kim, HakJin
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.273-284
    • /
    • 2018
  • Purpose: Conventional headland turning typically requires repeated forward and backward movements to move the farming equipment to the next row. This research focuses on developing an upland agricultural robot with an optimized headland turning mechanism that enables a $180^{\circ}$ turning positioning to the next row in one steering motion designed for a two-wheel steering, four-wheel drive agricultural robot named the HADA-bot. The proposed steering mechanism allows for faster turnings at each headland compared to those of the conventional steering system. Methods: The HADA-bot was designed with 1.7-m wide wheel tracks to travel along the furrows of a garlic bed, and a look-ahead path following algorithm was applied using a real-time kinematic global positioning system signal. Pivot turning tests focused primarily on accuracy regarding the turning radius for the next path matching, saving headland turning time, area, and effort. Results: Several test cases were performed by evaluating right and left turns on two different surfaces: concrete and soil, at three speeds: 1, 2, and 3 km/h. From the left and right side pivot turning results, the percentage of lateral deviation is within the acceptable range of 10% even on the soil surface. This U-turn scheme reduces 67% and 54% of the headland turning time, and 36% and 32% of the required headland area compared to a 50 hp tractor (ISEKI, TA5240, Ehime, Japan) and a riding-type cultivator (CFM-1200, Asia Technology, Deagu, Rep. Korea), respectively. Conclusion: The pivot turning trajectory on both soil and concrete surfaces achieved similar results within the typical operating speed range. Overall, these results prove that the pivot turning mechanism is suitable for improving conventional headland turning by reducing both turning radius and turning time.

GPS Array Antenna Installation On The Rear Missile Body (위성항법 배열안테나의 유도탄 동체 후방 배치)

  • Park, Bumsoo;Ahn, Woogeun;Lee, Jangyong;Ko, Duck kon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • In this paper we investigate the advantages when the GPS Antenna is installed on the rear missile body. In conventional design the GPS antenna locates on the front part of missile. However it causes degraded GPS positioning performance since the missile body blocks the GPS signals. This paper proposes the GPS array antenna design which locates on the rear part of missile body and has the tilted antenna patches to achieve the maximum area of receiving GPS signals. We simulate LOS region of receiving signals and conducted anechoic chamber test to define the effective signal receiving region. And we conduct field test and flight test to check out the enhancement of signal receiving area.

Carrier Phase Based Cycle Slip Detection and Identification Algorithm for the Integrity Monitoring of Reference Stations

  • Su-Kyung Kim;Sung Chun Bu;Chulsoo Lee;Beomsoo Kim;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In order to ensure the high-integrity of reference stations of satellite navigation system, cycle slip should be precisely monitored and compensated. In this paper, we proposed a cycle slip algorithm for the integrity monitoring of the reference stations. Unlike the legacy method using the Melbourne-Wübbena (MW) combination and ionosphere combination, the proposed algorithm is based on ionosphere combination only, which uses high precision carrier phase observations without pseudorange observations. Two independent and complementary ionosphere combinations, Ionospheric Negative (IN) and Ionospheric Positive (IP), were adopted to avoid insensitive cycle slip pairs. In addition, a second-order time difference was applied to the IN and IP combinations to minimize the influence of ionospheric and tropospheric delay even under severe atmosphere conditions. Then, the cycle slip was detected by the thresholds determined based on error propagation rules, and the cycle slip was identified through weighted least square method. The performance of the proposed cycle slip algorithm was validated with the 1 Hz dual-frequency carrier phase data collected under the difference levels of ionospheric activities. For this experiment, 15 insensitive cycle slip pairs were intentionally inserted into the raw carrier phase observations, which is difficult to be detected with the traditional cycle slip approach. The results indicate that the proposed approach can successfully detect and compensate all of the inserted cycle slip pairs regardless of ionospheric activity. As a consequence, the proposed cycle slip algorithm is confirmed to be suitable for the reference station where real time high-integrity monitoring is crucial.

Robotic-assisted Total Hip Arthroplasty and Spinopelvic Parameters: A Review

  • Steven J. Rice;Anthony D'Abarno;Hue H. Luu
    • Hip & pelvis
    • /
    • v.36 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Total hip arthroplasty (THA) is an effective treatment for osteoarthritis, and the popularity of the direct anterior approach has increased due to more rapid recovery and increased stability. Instability, commonly caused by component malposition, remains a significant concern. The dynamic relationship between the pelvis and lumbar spine, deemed spinopelvic motion, is considered an important factor in stability. Various parameters are used in evaluating spinopelvic motion. Understanding spinopelvic motion is critical, and executing a precise plan for positioning the implant can be difficult with manual instrumentation. Robotic and/or navigation systems have been developed in the effort to enhance THA outcomes and for implementing spinopelvic parameters. These systems can be classified into three categories: X-ray/fluoroscopy-based, imageless, and computed tomography (CT)-based. Each system has advantages and limitations. When using CT-based systems, preoperative CT scans are used to assist with preoperative planning and intraoperative execution, providing feedback on implant position and restoration of hip biomechanics within a functional safe zone developed according to each patient's specific spinopelvic parameters. Several studies have demonstrated the accuracy and reproducibility of robotic systems with regard to implant positioning and leg length discrepancy. Some studies have reported better radiographic and clinical outcomes with use of robotic-assisted THA. However, clinical outcomes comparable to those for manual THA have also been reported. Robotic systems offer advantages in terms of accuracy, precision, and potentially reduced rates of dislocation. Additional research, including conduct of randomized controlled trials, will be required in order to evaluate the long-term outcomes and cost-effectiveness of robotic-assisted THA.

Analysis of Positioning Performance According to the Condition of Multi-constellation GNSS (다중 위성항법시스템 이용조건에 따른 위성측위 성능 분석)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.567-572
    • /
    • 2016
  • Many studies have been performed since the introduction of GPS in Korea. As a result, positioning using GNSS was fully proposed. On the other hand, most of these studies focused on accuracy but analytical studies on the GNSS status and the national GNSS infrastructure of Korea are lacking. In this study, the status of multi-constellation GNSS and National Geographic Information Institute's CORS (Continuous Operating Reference Station) were identified for the benefit and direction of GNSS infrastructure enhancement. As a result, it has been operating Multi-constellation GNSS, such as GPS, GLONASS, Galileo, COMPASS, and QZSS for surveying. In addition, improvement was presented by the number of satellites, precision, PDOP, etc. through the experiment about VRS and RTK using Multi-constellation GNSS. Upgrading the infrastructure for satellite surveying was identified as a priority consideration. In the future, if a Multi-constellation GNSS service is possible in VRS service, the satisfaction of public administration service will improve, which will contribute greatly to the advancement of a surveying infrastructure.

Developement of GPS Data Quality Control Program (GPS 데이터 품질관리 프로그램의 개발)

  • Yun Hong-Sic;Lee Dong-Ha;Lee Young-Kyun;Cho Jae-Myung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • This paper describes a new program called GPS_QC needed to check the quality of GPS observations before post-processing so that the surveyors can be improved the precision of GPS data analysis. The GPS_QC was designed to calculate the quality control (QC) parameters such as data gaps, cycle slips, low elevation angle, inonspheric delay, multi-path effects and DOP etc, within the period of GPS observation. It can be used to read and calculate the QC parameters from RINEX files. This program gives users brief statistics, time series plots and graphs of QC parameters. The GPS_QC can simply be performed the quality checking of GPS data that was difficult for surveyors in the field. It is expected that we can be improved the precision of positioning and solved the time consuming problem of GPS observation.