• 제목/요약/키워드: Positioning Algorithm

검색결과 815건 처리시간 0.023초

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

Non-uniform Weighted Vibration Target Positioning Algorithm Based on Sensor Reliability

  • Yanli Chu;Yuyao He;Junfeng Chen;Qiwu Wu
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.527-539
    • /
    • 2023
  • In the positioning algorithm of two-dimensional planar sensor array, the estimation error of time difference-ofarrival (TDOA) algorithm is difficult to avoid. Thus, how to achieve accurate positioning is a key problem of the positioning technology based on planar array. In this paper, a method of sensor reliability discrimination is proposed, which is the foundation for selecting positioning sensors with small error and excellent performance, simplifying algorithm, and improving positioning accuracy. Then, a positioning model is established. The estimation characteristics of the least square method are fully utilized to calculate and fuse the positioning results, and the non-uniform weighting method is used to correct the weighting factors. It effectively handles the decreased positioning accuracy due to measurement errors, and ensures that the algorithm performance is improved significantly. Finally, the characteristics of the improved algorithm are compared with those of other algorithms. The experiment data demonstrate that the algorithm is better than the standard least square method and can improve the positioning accuracy effectively, which is suitable for vibration detection with large noise interference.

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

An indoor fusion positioning algorithm of Bluetooth and PDR based on particle filter with dynamic adjustment of weights calculation strategy

  • Qian, Lingwu;Yuan, Bingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3534-3553
    • /
    • 2021
  • The low cost of Bluetooth technology has led to its wide usage in indoor positioning. However, some inherent shortcomings of Bluetooth technology have limited its further development in indoor positioning, such as the unstable positioning state caused by the fluctuation of Received Signal Strength Indicator (RSSI) and the low transmission frequency accompanied by a poor real-time performance in positioning and tracking moving targets. To address these problems, an indoor fusion positioning algorithm of Bluetooth technology and pedestrian dead reckoning (PDR) based on a particle filter with dynamic adjustment of weights calculation strategy (BPDW) will be proposed. First, an orderly statistical filter (OSF) sorts the RSSI values of a period and then eliminates outliers to obtain relatively stable RSSI values. Next, the Group-based Trilateration algorithm (GTP) enhances positioning accuracy. Finally, the particle filter algorithm with dynamic adjustment of weight calculation strategy fuses the results of Bluetooth positing and PDR to improve the performance of positioning moving targets. To evaluate the performance of BPDW, we compared BPDW with other representative indoor positioning algorithms, including fingerprint positioning, trilateral positioning (TP), multilateral positioning (MP), Kalman filter, and strong tracking filter. The results showed that BPDW has the best positioning performance on static and moving targets in simulation and actual scenes.

분산전원과 토폴로지를 고려한 배전계통에서의 전기품질 모니터 위치 선정 기법 (Development of Monitor Positioning Algorithm considering Power System Topology and Distributed Generation)

  • 문대성;김윤성;원동준
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1744-1751
    • /
    • 2008
  • This paper presents a monitor positioning algorithm to identify the power quality event source in the distribution system with distributed generations. This algorithm determines the appropriate number of monitors and their locations considering power system topology together with distributed generation. This paper summarizes the guidelines of monitor positioning into five principles and defines the weighting factors according to the principles. To evaluate the adequacy of monitor positioning results, ambiguity indices considering monitor location and system topology are proposed. The optimal number and locations of monitors are determined from optimization routine using the weighting factors and the monitor positioning results are evaluated in terms of ambiguity indices. The algorithm is applied to IEEE 13 bus test feeder and suggests the optimal number and locations of power quality monitors. The proposed approach can realize the expert's knowledge on monitor positioning into a sophisticated automatic computing algorithm.

맵 매칭 알고리즘을 이용한 실내 위치 추정 정확도 개선에 대한 연구 (A Study on Improving Indoor Positioning Accuracy Using Map Matching Algorithm)

  • 성광제
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.50-55
    • /
    • 2023
  • Due to the unavailability of global positioning system (GPS) indoors, various indoor pedestrian positioning methods have been designed to estimate the position of the user using received signal strength (RSS) measurements from radio beacons, such as wireless fidelity (WiFi) access points and Bluetooth low energy (BLE) beacons. In indoor environments, radio-frequency (RF) signals are unpredictable and change over space and time because of multipath associated with reflection and refraction, shadow fading caused by obstacles, and interference among different devices using the same frequencies. Therefore, the outliers in the positional information obtained from the indoor positioning method based on RSS measurements occur often. For this reason, the performance of the positioning method can be degraded by the characteristics of the RF signal. To resolve this issue, a map-matching (MM) algorithm based on maximum probability (MP) estimation is applied to the indoor positioning method in this study. The MM algorithm locates the aberrant position of the user estimated by the positioning method within the limits of the adjacent pedestrian passages. Empirical experiments show that the positioning method can achieve higher positioning accuracy by leveraging the MM algorithm.

  • PDF

A Study of UWB Placement Optimization Based on Genetic Algorithm

  • Jung, Doyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.99-107
    • /
    • 2022
  • Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.

Improvement of Wi-Fi Location Accuracy Using Measurement Node-Filtering Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • 전기전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.67-76
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of the Wi-Fi access point (AP) positioning technique. The proposed algorithm based on evaluating the trustworthiness of the signal strength quality of each measurement node is superior to other existing AP positioning algorithms, such as the centroid, weighted centroid, multilateration, and radio distance ratio methods, owing to advantages such as reduction of distance errors during positioning, reduction of complexity, and ease of implementation. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment with multiple walls and obstacles, multiple office rooms, corridors, and lobby, and measured the corresponding AP signal strength value at several specific points based on their coordinates. Using the proposed algorithm, we can obtain more accurate positioning results of the APs for use in research or industrial applications, such as finding rogue APs, creating radio maps, or estimating the radio frequency propagation properties in an area.

고성능 선형전동기 위치제어 시스템에 대한 최소차원 부하관측기의 실제적 구현 및 이를 이용한 실시간 관성추정기의 구현 (A Study on The Actual Application of the Least Order Load Observer and Effective Online Inertia Identification Algorithm for High Performance Linear Motor Positioning System)

  • 김준석
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.730-738
    • /
    • 2007
  • As well known when the linear machine is operated between two points repeatedly under positioning control, there are various positioning error at the moment of zero speed owing to the non-linear disturbance like as unpredictable friction force. To remove this positioning error, a simple least order disturbance observer is introduced and is actually implemented in this study. Due to this simple algorithm the over-all machine system can be modified to simple arbitrary given one-mass load without any disturbance. So, the total construction process for positioning control system is much easier than old one. Moreover, to generate a proper effective position profile with the limited actual machine force, a very powerful on-line mass identification algorithm using the load force estimator is presented. In the proposed mass identification algorithm, the exact load mass can be calculated during only one moving stage under a normally generated position profile. All presented algorithm is verified with experimental result with commercial linear servo machine system.