• 제목/요약/키워드: Position reliability

검색결과 675건 처리시간 0.026초

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

선박 안전항행을 위한 항로표지의 위치오차 분석 (A Study on the Position Error of the Aids to Navigation as a Safety Factor at Sea)

  • 권혁동;김웅규;이주형;박계각
    • 한국항행학회논문지
    • /
    • 제10권3호
    • /
    • pp.226-234
    • /
    • 2006
  • 항로표지는 해상에서의 인명과 재산의 안전을 확보하기 위하여 매우 중요한 항행지원시설이다. 하지만 이 시설을 설계하고 설치 및 관리 그리고 이용하는 과정에서 매체별 또는 관리주체별로 서로 상이한 위치정보를 포함하고 있다. 항로표지의 위치신뢰도에 가장 영향을 미치는 요인으로서는 조류의 방향과 수심의 함수가 생성하는 선회반경이 있고, 위치측정의 주요 수단인 수평육분의 및 dGPS로 인한 시점별 변수가 있다. 본 논문은 이러한 잠재오차를 수치적으로 해석하고, 요인별 영향력과 감소방안을 제시하였다.

  • PDF

The reliability of the nonradiologic measures of thoracic spine rotation in healthy adults

  • Hwang, Donggi;Lee, Ju Hyeong;Moon, Seongyeon;Park, Soon Woo;Woo, Juha;Kim, Cheong
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권2호
    • /
    • pp.65-70
    • /
    • 2017
  • Objective: The purpose of this study was to examine the intertester reliability and validity of four nonradiologic measurements of thoracic spine rotation in healthy adults. Design: Descriptive laboratory study. Methods: This study was conducted on 20 male and 20 female university students aged between 19 and 26. To measure thoracic rotation, a goniometer, a bubble inclinometer, a dual inclinometer, and a smartphone application-clinometer were used. The measurement was performed twice for each device and the same measurement was performed by two examiners. The measurements were performed in the lumbar locked position. The arm in the direction of rotation was taken back and placed onto the back of the lumbar region. With right and left trunk rotation, the head was rotated together but remained in the center line so that the axial rotation was maintained. Both examiners performed the measuring procedures and directly handled the measuring instrument. All measurement results were recorded by the recorder. Results: The range of motion (ROM) of thoracic rotation in lumbar locked position for all four devices was 47 degrees. The intra-rater reliability estimates ranged from 0.738 to 0.906 (p<0.05). The inter-rater reliability estimates ranged from 0.736 to 0.853 (p<0.05). The goniometer, bubble inclinometer, dual inclinometer, and smartphone clinometer showed high validity (p<0.05). This result indicates that all four devices may be used by the same examiner and by other examiners obtaining follow-up measurement. Conclusions: The use of the goniometer, bubble inclinometer, dual inclinometer, and smartphone clinometer for measurements in the lumbar locked posture are reliable and valid nonradiologic measures of thoracic rotational ROM in healthy adults.

병원 간호사의 팀 공유정신, 팀 효과성, 팀 응집력, 팀 신뢰도, 이직의도에 관한 연구 (A Study on the Team Sharing Spirit Model, Team Effectiveness, Team Cohesion, Team Reliability, and Turnover Intension among Hospital Nurses)

  • 이지은;공정현;이해랑
    • 대한통합의학회지
    • /
    • 제8권3호
    • /
    • pp.121-131
    • /
    • 2020
  • Purpose : This study was conducted to confirm the correlation between team sharing spirit, team effectiveness, team cohesion, team reliability, and turnover intention of hospital nurses and to identify the influence factors affecting the turnover intention of hospital nurses. Methods : The sample for this study consisted of 200 nurses from four general hospitals of less than 500 beds located in J city. Data were analyzed using frequency, percentage, mean, standard deviation, t-test, ANOVA, Scheffe' test, Pearson Correlation and Hierarchical Multiple Regression. Results : Factors influencing nurse turnover intentions included satisfaction with nursing position (β=.274), team reliability (β=-.250), satisfaction with department (β=-.178), and career (β=.149) in order, and these influence factors accounted for 32.1 % of nurses' turnover intentions. Conclusion : Based on the results of the study, it is necessary to consider ways to reduce the turnover intention of nurses by devising strategies to increase the factors of satisfaction with nursing positions, team reliability, and satisfaction with department by making good use of the resources of the medical institution. It is suggested to conduct repeated studies of nurses working in various clinical sites and further studies applying various outcome variables in the future.

Inter- and Intra- Rater Reliability of Navicular Drop Tests Position

  • Kim, So-yeon;Yoo, Jung-eun;Woo, Da-hyun;Jung, Bo-young;Choi, Bo-ram
    • 대한물리치료과학회지
    • /
    • 제26권1호
    • /
    • pp.9-14
    • /
    • 2019
  • Background: Pes planus, or flat foot, causes lower limb malalignment and foot pain during walking or exercise. Therefore, a highly reliable evaluation method to accurately diagnose flat feet is necessary. This study investigated the intra-and inter-rater reliability of the navicular drop test in different postures. Design: Cross sectional study. Methods: Forty healthy volunteers performed the navicular drop test in three different combinations of non-weight-bearing and weight-bearing postures (standing/standing, sitting/sitting, and sitting/standing). Two examiners alternately performed the measurements five times in each subject, and in each posture. Significant differences in measurements were obtained among the three postures, with the highest navicular drop being observed in the sitting/standing posture. Results: Inter-rater reliability was high in the sitting/standing and sitting/sitting postures. Intra-rater reliability was high in all three postures. In the sitting/sitting and sitting/standing postures, large navicular drop values and high inter- and intra-rater reliability were observed. Conclusion: Therefore, the sitting/standing and sitting/sitting postures are recommended for use in navicular drop tests to diagnose flat feet.

Reliability and Validity of the Side-lying Instability and Prone Instability Tests in Patients with Lumbar Segmental Instability

  • Kim, Bo-Eon;Lee, Kwan-Woo;Park, Dae-Sung
    • 대한물리의학회지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2021
  • PURPOSE: The purpose of this study is to conduct inter-rater and intra-rater reliability tests in patients with low back pain (LBP) using the prone instability test (PIT) and side-lying instability test (SIT). We have analyzed the Korean version Oswestry disability index (K-ODI) correlations and radiograph finding (RF) for validity. METHODS: Individuals (n = 51) (mean age of 40.27 ± 13.28) with LBP for at least over a week were recruited, together with two participating physical therapist examiners. The measurement consisted of PIT, PST, K-ODI, and RF. Sensitivity (Sn), specificity (Sp), positive predictive value, negative predictive value, prevalence index, agreement %, Cohen's kappa, and prevalence-adjusted bias-adjusted kappa (PABAK) were calculated. The PIT and SIT were compared with RF for validity analysis, while PIT, SIT, K-ODI, and RF were calculated for the correlation analysis. RESULTS: The intra-rater reliability test measured for the PIT (kappa = .79, PABAK = .88) and SIT (kappa = .73, PABAK = .84), and inter-rater reliability test measured for the SIT (kappa = .80, PABAK = .88) showed good agreements. The PIT (Sn = .65, Sp = .63) and SIT validities (Sn = .68, Sp = .70) were compared with RF, showing a significant correlation in PIT and RF (r = .69), SIT and RF (r = .73), and PIT and K-ODI (r = .53). CONCLUSION: The SIT is a more comfortable position test than the PIT in patients. Both PIT and SIT have acceptable reliability and validity.

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

연속소둔로에서 판중심 위치 제어를 위한 적응 역비례 제어기의 설계 (Design of Adaptive Inverse Control for Center Position Control of Steel-Strip in Continuous Annealing Line)

  • 김영수;조성은;이영교;김상우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.608-610
    • /
    • 2004
  • In continuous annealing line (CAL), POSCO, the center position control (CPC) is an essential technique that renders the steel-strip to pass at the center of a roll in order to prevent the strip from skewing or breaking. The CPC algorithm currently installed on the steering roll in the heating section of CAL is to control the strip position by using the reverse phase of error from the center position, without considering the dynamics of strip horizontal movement. Such algorithm may, unfortunately, require a manual operation occasionally when the range of strip input becomes wide, causing the dynamics 0 be dominant. Other PID-type control is rarely used in automatic operation because the excess of response may occur when the discontinuous points such as welding joints pass through rolls. In this paper, we identify the CPC system by using off-line data and design a compensator for the excessive dynamics by using the adaptive inverse control. Simulation result depicts the improved reliability of the proposed CPC system.

  • PDF

Sensorless Control Method in IPMSM Position Sensor Fault for HEV

  • Kim, Sung-Joo;Lee, Yong-Kyun;Lee, Ju-Suk;Lee, Kwang-Woon;Kwon, Taesuk;Mok, Hyungsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1056-1061
    • /
    • 2013
  • The widely used motors in HEV(Hybrid Electric Vehicles) are IPMSM(Interior Permanent Magnet Synchronous Motor) which has no rotor heat, higher efficiency and advantageous in volume and weight comparing with other motors. For vector control of IPMSM, position information of rotor is required but Resolver is mainly used as the detecting sensor. However, the use of position sensors will reduce the system reliability of hybrid electric vehicles. In this paper, a way to control the motor by sensorless was proposed at the event of sensor failure. We also implemented IPMSM sensorless operation by the expanded EMF(Electro Motive Force) voltage way and harmonic voltage which is applying in the low speed area. And we proposed how to change with sensorless control by detecting the position sensors failure and verified it through experiments.

스위치드 리럭턴스 전동기의 센서리스 속도제어 (Speed Sensorless Control of Switched Reluctance Motor)

  • 신규재;권영안
    • 전기전자학회논문지
    • /
    • 제2권2호
    • /
    • pp.166-172
    • /
    • 1998
  • 스위치드 리럭턴스 전동기는 구조가 간단하고 회전자관성이 작으며 고효율을 가지는 전동기이다. 그러나 회전자 위치각에 적절한 상여자 신호를 동기화하기 위해서는 위치센서가 필수적이다. 이 위치센서로 인하여 구동시스템의 가격상승과 열악한 환경에서 시스템의 신뢰성이 저하되는 문제점을 가지게 된다. 본 논문에서는 위치 및 속도센서가 없는 스위치드 리럭턴스 전동기의 속도제어 시스템을 연구하였다. 센서리스 SRM의 안정된 속도제어를 위하여 회전자 위치검출을 상전류 및 변화율 검출로부터 구하였으며 속도오차에 대하여 도통각 주기폭을 변동하는 속도제어 시스템을 제안하였다. 이 구동시스템은 위치결정회로 속도제어기, 디지탈논리 정류자, 스위칭각 제어기와 인버터로 구성된다. 제안된 시스템은 실험을 통하여 성능을 검증하였다.

  • PDF