• 제목/요약/키워드: Position error compensation

검색결과 251건 처리시간 0.024초

2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터 (A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar)

  • 김병두;이자성
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템 (A Landmark Based Localization System using a Kinect Sensor)

  • 박귀우;채정근;문상호;박찬식
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

AGV의 장애물 판별을 위한 스테레오 비젼시스템의 거리오차 해석 (Analysis of Distance Error of Stereo Vision System for Obstacle Recognition System of AGV)

  • 조연상;배효준;원두원;박흥식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.170-173
    • /
    • 2001
  • To apply stereo vision system to obstacle recognition system of AGV, we constructed algorithm of stereo matching and distance measuring with stereo image for positioning of object in area. And using this system, we look into the error between real position and measured position, and studied relationship of compensation.

  • PDF

리니어모터 스테이지 편요오차 보상장치 제어 (Control for a Yaw Error Compensation System of Linear Motor Stage)

  • 이승현;강민식
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구 (A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools)

  • 이응석;구상서;박달근
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

운동량 감시 기능을 포함한 개인항법시스템 개발 (Development of a Personal Navigation System Including Activity Monitoring Function)

  • 강동연;윤희학;차은종;박찬식
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.286-293
    • /
    • 2008
  • The design and implementation of a personal navigation system including activity monitoring function is given in this paper. The system consists of a 3 dimensional MEMS accelerometer, digital compasses and ZigBee communication. An accelerometer and digital compasses are used to compute the position and activity. The obtained position and activity information is transmitted to a fixed beacon via ZigBee. At the same time, activity information is stored in the personal navigation system to a batch analysis program. The step detection algorithm which is robust to attaching location is proposed. Also two digital compass error compensation algorithms are proposed to find more precise headings. The experiments with a real system show that the activities of users and continuous locations less than 1.5m errors are obtained after 80m walking.

Development of an Automatic Label Attaching System Using a Robot Vision in Variable Situation

  • Lee, Young-Jung
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.225-230
    • /
    • 2004
  • A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.

  • PDF

위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선 (Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation)

  • 박귀열;황요한;허남;이주
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

PMSM의 벡터제어시 위치센서 오차에 의해 발생하는 토오크 리플에 대한 해석과 그 보상 방법 (Analysis and a Compensation Method for Torque Ripple caused by Position Sensor Error in PMSM's Vector Control)

  • 이정민;목형수;최규하;김상훈;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.205-207
    • /
    • 2007
  • Position information is very important when driving the Permanent Magnet Synchronous Motor(PMSM). Generally, resolver is used to obtain exact position information. However, it generates periodic position errors due to the transformer ratio difference and excitation signal distortion. When the vector control is done with the position information that includes position error, torque ripple is periodically generated. This paper proposes the solution through analysis of above problem. Also, it’s validity is verified by simulation and experiment.

  • PDF