• Title/Summary/Keyword: Position determination

Search Result 555, Processing Time 0.025 seconds

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Visral Control of Robotic Manipulators Based on Neural Network (시각정보에 의한 로보트 매니퓰레이터의 위치.자세 제어 - 신경회로망의 이용)

  • 심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1042-1046
    • /
    • 1993
  • This paper describes a control scheme for a robot manipulator system which uses visual information to position and orientate the end-effector. In this scheme, the position and orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control scheme directly integrates visual data into the servoing process without subdividing the process into determination of the position and orientation of the workpiece and inverse kinematics calculation. A neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientation. The proposed system can be control the robot so that it approach the desired position and orientation from arbitrary initial ones. Simulation for the robot manipulator with six degrees of freedom will be done. The validity and the effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

A Study on the Errors in the Free-Gyro Positioning and Directional System (자유자이로 위치 및 방위시스템의 오차에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

Absolute Altitude Determination for 3-D Indoor and Outdoor Positioning Using Reference Station (기준국을 이용한 실내·외 절대 고도 산출 및 3D 항법)

  • Choi, Jong-Joon;Choi, Hyun-Young;Do, Seoung-Bok;Kim, Hyun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The topic of this paper is the advanced absolute altitude determination for 3-D positioning using barometric altimeter and the reference station. Barometric altimeter does not provide absolute altitude because atmosphere pressure always varies over the time and geographical location. Also, since Global Navigation Satellites system such as GPS, GLONASS has geometric error, the altitude information is not available. It is the reason why we suggested the new method to improve the altitude accuracy. This paper shows 3-D positioning algorithm using absolute altitude determination method and evaluates the algorithm by real field tests. We used an accurate altitude from RTK system in Seoul as a reference data and acquired the differential value of pressure data between a reference station and a mobile station equipped in low cost barometric altimeter. In addition, the performance and advantage of the proposed method was evaluated by 3-D experiment analysis of PNS and CNS. We expect that the proposed method can expand 2-D positioning system 3-D position determination system simply and this 3-D position determination technique can be very useful for the workers in the field of fire-fighting and construction.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Determination of KITSAT-3 Orbital Elements Using GPS Data from a Low-End Receiver (저급 GPS 수신기 데이터를 이용한 우리별 3호의 궤도 요소 결정)

  • Lee, Eun-Sung;Lee, Young-Jae;Jee, Gyu-In;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.123-129
    • /
    • 2002
  • This paper reveals determination of orbital elements of the satellite using GPS data collected by the low-end GPS receiver installed at KITSAT-3 which is a small scientific experimental satellite of Korea and launched in May 1999. An extended Kalman filter is designed for a forward estimation of real-time 3-dimensional position and velocity, and a smoother is used for a backward post-processing estimation of the same states. After finishing estimation of position and velocity, the corresponding orbital elements are estimated. Finally, the result of each orbital element is analyzed.

Implementation of User Posture Correction Application using Kinect (키넥트를 이용한 사용자 자세 교정 어플리케이션 구현)

  • Kim, Hyeon-Woo;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.275-276
    • /
    • 2016
  • In this paper, we were implemented the application to induce correct posture by recognizing the incorrect posture of the user. Implemented system uses kinect sensors to determine the user's position information, it has been developed posture determination algorithm that can determine the four wrong posture and correct posture. In addition to PC in order to improve the user convenience and accessibility, to implement real-time monitoring application that can determine the user's position in the smartphone. For the system of performance evaluation of and promote the attitude determination experiment to target the five college students, the experimental results sensitivity and specificity of it it was found that the attitude determination performance is excellent at 0.956.

  • PDF

Relationship of TMJ sound and mandibular positions recorded by a newly developed intra oral tracer (새로 개발된 구내묘기장치에 의해 채득된 하악위와 측두하악관절잡음과의 관계)

  • Yu, Kang-Suk;Choi, Min-Ho;Kim, Chang-Hyun;Park, Young-Rok;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • It is clinically important to determine the physiologic mandibular position as the therapeutic position of the patients who needs the oral rehabilitation and occlusal treatment. Several methods have been employed for the recording the mandibular position. The gothic arch tracer is one of methods to record the mandibular position. The purpose of this study is to record the border position, chewing position, and myocentric position using the newly developed intra oral tracer in 10 subjects with TMJ clicking sound and 10 subjects without TMJ clinking sound.. This study showed that newly developed intra oral tracer allowed clinician the determination of the treatment position on the same horizontal plate which can be used in the full mouth rehabilitation and occlusal treatments. There was no statistically significant difference between clicking group and nonclicking group in the distance of border position-chewing position and the distance of border position-myocentric centric position.