• Title/Summary/Keyword: Position Variation

Search Result 1,192, Processing Time 0.04 seconds

Classification , Distribution and Geographic Variation of Two Species of the Genus Moroco in Korea (한국산 버들치속(Genus Moroco) 어류 2 종의 분류.분포 및 지리적 변이에 관하여)

  • 민미숙;양서영
    • Animal Systematics, Evolution and Diversity
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1986
  • Two species of Moroco oxycephalus and M. lagowskii were studied to examine patterns of genic variation and morphological difference within and between populations of two species, and to clarify their taxonomic status and geographic distribution. The number of scales above lateral line(SAL) was the key character to classify these species. On the average, M.lagowskii had 22 or more SAL whereas M.oxycephalus had 20 or less. Previously known character of the position of dorsal fin was found to be not appropriate to distinguish them. Five loci, Gp, st-1, Est-2, Est-3 and Got-1 , showed fixed difference electrophoretically between two species and these could be used as genetic markers to identify them. The degree of genic variation of M. oxycephalus was four fold higher(H=0.032) than that of M. lagowskii(H=0.008) but both species were far less than the average genic variation of freshwater fish in general. Rogers' genetic similarity coefficients between two species were S=0.692 and their presumed divergent time was estimated to be sbout 1.8million years ageo. Detailed survey of the geographic distribution of thses revealed that M.lagowskii was distributed in northeastern part of South Korea(Ganseong , Gangreung, Wangsan, and Oggye) and M. oxycephalus was occupied rest of the peninsula. The distrance between Oggye, the southern limit of M. lagowskii distribution , and Samwha (near Samcheog), the northern limit of M.oxycephalus, was aobut 15 Km apart and no symparty was found in between.

  • PDF

Implementation of Impedance Method to Estimate Blood Flow Variation with Cuff Pressure Change (커프 압력 조절에 따른 혈류량 변화 평가를 위한 임피던스법의 구현)

  • Jeong, Do-Un;Bae, Jin-Woo;Shon, Jung-Man;Yae, Su-Yung;Choi, Byeong-Cheol;Nam, Ki-Gon;Kim, Cheol-Han;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.462-472
    • /
    • 2004
  • In this study, we measured the blood flow on arm by non-invasive method and implemented a system to measure variation of the blood flow by estimating bio-electrical impedance and arterial pressure according to cuff pressure. The implemented system measured impedance variation according to pressure variation applied by artificial cuff pressure on the measuring position. The system consisted of pressure measuring part and impedance measuring part using 4-electrode method. Pressure measuring part was composed of semiconductor pressure sensor and electronic circuit for signal processing of sensor output signal. In addition, impedance measuring part was composed of constant current source circuit and lock-in amplifier for detecting impedance signal. We conducted experiments of impedance measuring part using standard resistance for performance evaluation of the implemented system. In addition we experimented to estimate variation of the blood flow by measuring impedances of the experimental group. We estimated ratio of the blood flow resistance using mean arterial pressure and variation of the blood flow. As a result the ratio of the blood flow resistance and variation of blood flow were in an inverse relationship with each other and the correlation coefficient was -0.96776.

An effect of time gating threshold (TGT) on a delivered dose in internal organ with movement due to respiration (호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold(TGT)의 효과)

  • Kim, Yon-Lae;Chung, Jin-Bum;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.132-135
    • /
    • 2004
  • In this study, we investigated the effect of threshold on a delivered dose in organ with internal motion by respiration. With mathematic model for 3D dose calculation reported by Lujan et al., we had calculated the position of organ as a function of time in previous study. This result presented that the variation of organ is within 2 mm from initial exhale position to the organ position during operating 1 s. Gating threshold, in this study, is determined to the moving region of target during 1s at a primary position of exhale. This period of gating threshold is 50% of the duty cycle in a half breathing cycle which is period from the top position of exhalation to the bottom position of inhalation. Radiation fields were then delivered under three conditions; 1) existent of moving target in the region of threshold(1sec, 1.5sec), 2) existent of moving target out of the region of threshold, 3) non-moving target. The non-moving target delivery represents a dose different induced due to internal organ motion.

  • PDF

The Position Control of Induction Motor using Reaching Mode Controller and Neural Networks (리칭모드 제어기와 신경 회로망을 이용한 유도전동기의 위치제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.72-83
    • /
    • 2000
  • This paper presents the implementation of the position control system for 3 phase induction motor using reaching mode controller and neural networks. The reaching mode controller is used to bring the position error and speed error trajectories toward the sliding surface and to train neural networks at the first time. The structure of the reaching mode controller consists of the switch function of sliding surface. And feedforward neural networks approximates the equivalent control input using the reference speed and reference position and actual speed and actual position measured form an encoder and, are tuned on-line. The reaching mode controller and neural networks are applied to the position control system for 3 phase induction motor and, are compared with a PI controller through computer simulation and experiment respectively. The results are illustrated that the output of reaching mode controller is decreased and feedforward neural networks take charge of the main part for the control action, and the proposed controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

  • PDF

Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade (고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향)

  • Rhee Dong-Ho;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

Change of Sacral Slope according to the Surgical Position in Total Hip Arthroplasty

  • Shobit Deshmukh;Nirav Gupta;Ki Seong Heo;Won Yong Shon;Se Myoung Jo;Anshul Pancholiya
    • Hip & pelvis
    • /
    • v.36 no.3
    • /
    • pp.187-195
    • /
    • 2024
  • Purpose: Pelvis tilting in sagittal plane influences the acetabular cup position. Majority of total hip arthroplasty (THA) are performed in lateral decubitus surgical position. This study is to assess whether there is any difference in sacral slope between standing and lateral decubitus position and influence of this variation in planning acetabular cup anteversion. Materials and Methods: This is a prospective study including 50 patients operated between January 2020 to March 2022. Preoperative radiograph included lumbosacral spine lateral X-ray in standing, supine and lateral decubitus positions to calculate the sacral slope for assessment of anterior or posterior pelvic tilting. In our study, we determined the position of the acetabular cup based on changes in sacral slope between standing and lateral decubitus postures. For patients whose sacral slope increased from lateral decubitus to standing, we implanted the acetabular component with a higher degree of anteversion. Conversely, for patients with reverse phenomenon, the cup was inserted at lower anteversion. Results: Twenty-four patients (48.0%) had increase in sacral slope from lateral decubitus to standing whereas 26 patients (52.0%) had decrease in sacral slope. There was linear correlation between difference in preoperative sacral slope and postoperative cross table lateral cup anteversion. Harris hip scores improved from 40.78 to 85.43. There was no subluxation or dislocation in any patient at minimum 2-year follow-up. Conclusion: Individualized acetabular cup placement is important for better functional outcome in THA. Evaluation of pelvic tilting in lateral decubitus position is necessary for better positioning of acetabular cup and avoid postoperative complications.

Usefulness of Scan Position Change on Dual Time Point PET-CT in Pancreas Cancer (췌장암 Dual Time Point PET/CT 검사에서 Scan Position Change의 유용성 평가)

  • Chang, Boseok;Kim, Jae Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.299-305
    • /
    • 2016
  • Despite of the development of medical equipments and technology. Pancreatic cancer has maked high false positive rate and low survival rate compared to other cancers. Therefore, early catch of pancreatic cancer is the only way to enhance the viability. It is important to find the exact location of the pancreas cancer in early stage. The method of optimum scan for early detection of pancreatic cancer on PET/CT exam is proposed. Examined the anatomical region that potentially can be missing from the supine position of ordinary pet/ct exam. The characteristics and usefulness of angle variation ($0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$) of patients scan position is analyzed. The proposed scan method (named JJ-projection) is bringing advantage of anatomical discrimination by separating stomach, liver, gallbladder duodenum and pancreas. ROC curve analysis is shows to advantage of the JJ-Projection method. The sensitivity has increased 4.6% than the supine delay scan method, the results sensitivity has increased from 91% to 95.2%. The specificity has increased from 75.1% to 84%. Compared with the results observed in cancer by biological biopsy, The accuracy has increased from 86.8% to 94.1%.

A Study on the Start-up Control for HDD Spindle Motors (HDD 스핀들 모터의 초기 구동 제어에 관한 연구)

  • Jeong, Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1065-1072
    • /
    • 2008
  • A HDD adopts a sensorless brushless DC (BLDC) motor as a spindle motor. Because there is no direct sensor measuring rotor position. open loop commutations with inductive sensing are used to increase the rotor speed up to a certain speed where the zero crossings of the back electromotive force (EMF) voltage are measurable. Therefore, successful open loop commutations are necessary for the stable start-up control of the spindle motors. In this paper, the time scale and the number of the open loop commutations are employed for design parameters to guarantee robustness to torque constant variation and initial rotor position. The design results are verified by experiments on a very low current start-up of the spindle motor with various environment. The experimental results show that the design results can decrease the start-up failure rate considerably.

A Position Control of Brushless DC Motor for Power Installation with Binary Control (바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어)

  • 유완식;조규민;김영석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

Control of a Rotary Inverted Pendulum System Using Brain Emotional Learning Based Intelligent Controller (BELBIC을 이용한 Rotary Inverted Pendulum 제어)

  • Kim, Jae-Won;Oh, Chae-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-844
    • /
    • 2013
  • This study performs erection of a pendulum hanging at a free end of an arm by rotating the arm to the upright position. A mathematical model of a rotary inverted pendulum system (RIPS) is derived. A brain emotional learning based intelligent controller (BELBIC) is designed and used as a controller for swinging up and balancing the pendulum of the RIPS. In simulations performed in the study, a pendulum is initially inclined at $45^{\circ}$ with respect to the upright position. A simulation is also performed for evaluating the adaptiveness of the designed BELBIC in the case of system variation. In addition, a simulation is performed for evaluating the robustness of the designed BELBIC against a disturbance in the control input.