References
- Iraj, H., Saleh, M., Abbas, H., 2008, Input-Output Feedback Linearization Cascade Controller Using Genetic Algorithm for Rotary Inverted Pendulum System, American Journal of Applied Sciences 5:10 1322-1328. https://doi.org/10.3844/ajassp.2008.1322.1328
- Lachhab, N., Abbas, H., Werner, H., 2008, A neuralnetwork based technique for modelling and LPV control of an arm-driven inverted pendulum, Decision and Control 47th IEEE Conference 3860-3865.
- Jung, S., Wen, J. T., 2004, Nonlinear Model Predictive Control for the Swing-Up of a Rotary Inverted Pendulum, Journal of Dynamic Systems Measurement and Control 126 666-673. https://doi.org/10.1115/1.1789541
- Kaise, N., Fujimoto, Y., 1999, Applying the evolutionary neural networks with genetic algorithms to control a rolling inverted pendulum, Springer Berlin Heidelberg 223-230.
- Jung, D. Y., Kim, H. R., Han, S. H., 2004, Intelligent Controller of Mobile Robot Using Genetic Algorithm, KSMTE Spring Conference 2004 181-186.
- Tack, H. H., Kim, M. G., 2001, The Stabilization control of inverted pendulum system using neuro fuzzy control algorithm, Agricultural Technology Institute of Jinju Industrial College 14 207-214.
- Melba, M. P., Marimuthu, N. S., 2008, Design of intelligent hybrid controller for swing-up and stabilization of rotary inverted pendulum, ARPN Journal of Engineering and Applied Sciences 3:4 60-70.
- Roh, S. B., Oh, S. K., 2001, The Design of hybrid fuzzy controller for inverted pendulum, KIEE Summer Conference 2702-2704.
- Krishen, J., Becerra, V. M., 2006, Efficient fuzzy control of a rotary inverted pendulum based on LQR mapping, IEEE International Symposium on Intelligent Control 2701-2706.
- Fallahi, M., Azadi, S., 2009, Adaptive Control of an Inverted Pendulum Using Adaptive PID Neural Network, IEEE International Conference on Signal Processing System 589-593.
- Lucas, C., Shahmirzadi, D., Sheikholeslami, N., 2004, Introducing BELBIC : Brain Emotional Learning Based Intelligent Control, Intelligent Automation and Soft Computing 10:1 11-22. https://doi.org/10.1080/10798587.2004.10642862
- Moren, J., 2002, Emotion and Learning, Doctorate Thesis, Department of Cognitive Science Lund University, Sweden.
- Rashidi, F., Rashidi, M., Hashemi, A., 2003, Appling intelligent controllers for speed regulation of DC motor, The 11th Mediterranean Conference on Control and Automation 1-6.
- Jafarzadeh, S., Mirheidari, R., Jahed-Motlagh, M. R., Barkhordari, M., 2008, Designing PID and BELBIC controllers in path tracking problem, International Journal of Computers Communications & Control 3 343-348. https://doi.org/10.15837/ijccc.2008.4.2402
- Valizadeh, S., Jamali, M. R., Lucas, C., 2008, A particleswarm- based approach for optimum design of BELBIC controller in AVR system, ICCAS 2008 International Conference on. IEEE 2679-2684.
- Arpit, J., 2009, Computational modeling of the brain limbic system and its application in control engineering, Master Thesis, Engineering in Electronics Instrumentation & Control Engineering to Thapar University, India.
- Matlab simulink, 2009, http://www.mathworks.co.kr/products /simulink/index.html.
Cited by
- Linear State Feedback Regulation of a Furuta Pendulum: Design Based on Differential Flatness and Root Locus vol.4, 2016, https://doi.org/10.1109/ACCESS.2016.2637822