• Title/Summary/Keyword: Position Variation

Search Result 1,192, Processing Time 0.032 seconds

An implementation of the automatic labeling rolling-coil using robot vision system (로봇 시각 장치를 이용한 압연코일의 라벨링 자동화 구현)

  • Lee, Yong-Joong;Lee, Yang-Bum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.497-502
    • /
    • 1997
  • In this study an automatic rolling-coil labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel mill. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moments invariant algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transferred by asynchronous communication method. Therefore, even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

Sonoanatomic Variation of Pes Anserine Bursa

  • Imani, Farnad;Rahimzadeh, Poupak;Gharehdag, Farid Abolhasan;Faiz, Seyed Hamid Reza
    • The Korean Journal of Pain
    • /
    • v.26 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • Background: The pes anserine bursa lies beneath the pes anserine tendon, which is the insertional tendon of the sartorius, gracilis, and semitendinosus muscles on the medial side of the tibia, but it can lie in different sites in the medial knee. Accurate diagnosis of the position of the bursa is critical for diagnostic and therapeutic goals. The aim of this study was to evaluate sonoanatomic variations of the pes anserine bursa in the medial knee. Methods: One hundred seventy asymptomatic volunteers were enrolled in this study. Using ultrasound imaging (transverse approach, 7-13 MHz linear array probe) the sonoanatomic position of the pes anserine bursa and its relation to the pes anserine tendon were evaluated. Additionally, we evaluated the sonoanatomic variation of the saphenous nerve. Results: The position of the pes anserine bursa was between the medial collateral ligament and the pes anserine tendons in 21.2%/18.8% (males/females) of subjects; between the pes anserine tendons and the tibia in 67.1%/64.7% (m/f); and among the pes anserine tendons in 8.2%/12.9% (m/f). No significant differences in the position of the bursa existed between males and females. The saphenous nerve was found within the pes anserine tendons in 77.6%/74.1% (m/f) of subjects, but outside the pes anserine tendons in 18.8%/15.3% (m/f). Visibility of sonoanatomic structures was not related to either gender or BMI. Conclusions: Ultrasound provides very accurate information about variations in the pes anserine bursa and the saphenous nerve. This suggests that our proposed ultrasound method can be a reliable guide to facilitate approaches to the medial knee for diagnostic and therapeutic objectives.

Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems (고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

Phase Current Variation of Bifilar-Wound Hybrid Stepping Motor by Lead Angle Control (Lead Angle 제어에 의한 복권형 하이브리드 스테핑 전동기의 상전류 변화에 관한 연구)

  • 우광준;이종언
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.26-34
    • /
    • 1998
  • In this paper, we confirm that the instanteneous phase current of the bifilar-wound hybrid stepping motor is dependent of lead angle by the experimental results. The variation of phase current with lead angle gives informations about the rotor position at the moment when phase winding coil is excited. We show that the rotor position of the bifilar-wound hybrid stepping motor for the closed-loop drives can be detected by using the instantaneous phase current measurement. We propose an instantaneous phase current equation as the function of electrical lead angle by the modeling of the bifilar-wound hybrid stepping motor. We also analyze the relationship between instantaneous phase current and rotor position by the computer simulation results. By the experimental results, we also confirm that the information about the rotor position can be obtained from the instantaneous phase current values at the instance of $\pi/2$ electrical angle of excitation pulse. pulse.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Lee, Jin-Woo;Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.405-413
    • /
    • 2006
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it an other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon;Lee, Jin-Woo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.55-64
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement (차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Acoustic Variation Conditioned by Prosody in English Motherese

  • Choi, Han-Sook
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The current study exploresacoustic variation induced by prosodic contexts in different speech styles,with a focus on motherese or child-directed speech (CDS). The patterns of variation in the acoustic expression of voicing contrast in English stops, and the role of prosodic factors in governing such variation are investigated in CDS. Prosody-induced acoustic strengthening reported from adult-directed speech (ADS)is examined in the speech data directed to infants at the one-word stage. The target consonants are collected from Utterance-initial and -medial positions, with or without focal accent. Overall, CDS shows that the prosodic prominence of constituents under focal accent conditions variesin the acoustic correlates of the stop laryngeal contrasts. The initial position is not found with enhanced acoustic values in the current study, which is similar to the finding from ADS (Choi, 2006 Cole et al, 2007). Individualized statistical results, however, indicate that the effect of accent on acoustic measures is not very robust, compared to the effect of accent in ADS. Enhanced distinctiveness under focal accent is observed from the limited subjects' acoustic measures in CDS. The results indicate dissimilar strategies to mark prosodic structures in different speech styles as well as the consistent prosodic effect across speech styles. The stylistic variation is discussed in relation to the listener under linguistic development in CDS.

  • PDF