• Title/Summary/Keyword: Position Tolerance

Search Result 173, Processing Time 0.02 seconds

Construction of Management System of Road Position Information Using GPS Surveying Data

  • Kim, Jin-Soo;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • This study aims to construct a management system of road position information as part of the build-up to a maintenance and management system of highways. First, information on the positions of the roads were obtained by a real-time kinematic satellite surveying, and then the degree of accuracy was analyzed in comparison with the data of the existing design drawings. The linear coordinates of road center line obtained by using RTK GPS showed about 7.6-13.2cm errors in X and Y directions in the case of the national road No.2 section, and about 8.4-9.2cm errors in the case of local road No.1045 section. These errors were within the tolerance scope regulated by the TS survey, and could be practically used. In the case of vertical alignment, there were about 6.2cm errors in the Z direction in local road No.1045 section. Aerial photographs are normally used in producing numerical maps, and it can be practically used because the tolerance scope of the elevation control point is l0cm when the scale of aerial photographs is 1/1000. The management system of road position information, utilizing Object-Oriented Programming(OOP), was built having the data acquired in this way as the attribute data. The system developed in this way can enable us to spot the positions of road facilities, the target of management with ease, to easily update the data in case of changes in the positions of roads and road facilities, and to manage the positions of roads and road facilities more effectively.

  • PDF

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong;Liu, Jinglin;Hu, Yihua;Zhang, Xiaokang;Ni, Kai;Si, Jikai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1945-1955
    • /
    • 2018
  • High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

Macro-Micro Manipulation with Visual Tracking and its Application to Wheel Assembly

  • Cho Changhyun;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.461-468
    • /
    • 2005
  • This paper proposes a wheel-assembly automation system, which assembles a wheel into a hub of a vehicle hung to a moving hanger in a car manufacturing line. A macro-micro manipulator control strategy is introduced to increase the system bandwidth and tracking accuracy to ensure insertion tolerance. A camera is equipped at the newly designed wheel gripper, which is attached at the center of the end-effector of the macro-micro manipulator and is used to measure position error of the hub of the vehicle in real time. The redundancy problem in the macro-micro manipulator is solved without complicated calculation by assigning proper functions to each part so that the macro part tracks the velocity error while the micro part regulates the fine position error. Experimental results indicate that tracking error satisfies the insertion tolerance of assembly $({\pm}1mm)$, and thus it is verified that the proposed system can be applied to the wheel assembly task on a moving hanger in the manufacturing line.

Structural configurations and dynamic performances of flexible riser with distributed buoyancy modules based on FEM simulations

  • Chen, Weimin;Guo, Shuangxi;Li, Yilun;Gai, Yuxin;Shen, Yijun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.650-658
    • /
    • 2021
  • Flexible risers are usually used as conveying systems to bring ocean resources from sea bed up to onshore. Under ocean environments, risers need to bear complex loads and it is crucial to comprehensively examine riser's configurations and to analyze structural dynamic performances under excitation of bottom vehicle motions, to guarantee structural safe operation and required service lives. In this study, considering a saddle-shaped riser, the influences of some important design parameters, including installation position of buoyancy modules, buoyancy ratio and motion of mining vehicle, on riser's configuration and response are carefully examined. Through our FEM simulations, the spatial distributions of structural tensions and curvatures along of riser length, under different configurations, are compared. Then, the impacts of mining vehicle motion on riser dynamic response are discussed, and structural tolerance performance is assessed. The results show that modules installation position and buoyancy ratio have significant impacts on riser configurations. And, an appropriate riser configuration is obtained through comprehensive analysis on the modules positions and buoyancy ratios. Under this proposed configuration, the structural tension and curvature could moderately change with buoyancy modules and bottom-end conditions, in other words, the proposed saddle-shaped riser has a good tolerance performance to various load excitations.

Analyzing Position-Domain Hatch Filter for Real-Time Kinematic Differential GNSS (실시간 동적 차분 위성항법을 위한 위치영역 Hatch 필터의 성능 해석)

  • Lee, Hyeong-Geun;Ji, Gyu-In;Rizos, C.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2006
  • Performance characteristics of the position-domain Hatch filter is analyzed for differential global navigation satellite systems. It is shown that the position-domain Hatch filter generates white measurement residual sequences, which is beneficial property for fault detection. It is also shown that the position-domain Hatch filter yields more accurate a priori state estimate than the position-domain Kalman-type filter. Thus, it can be concluded that the position-domain Hatch filter is beneficial in wide application areas where fault-tolerance and accuracy are required at the same time.

Position/force Control using 6-axis Compliance Device for Chemical Coupler Assembly (케미컬 커플러 체결을 위한 순응장치를 이용한 위치/힘 동시제어)

  • Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.909-915
    • /
    • 2022
  • In this paper, a robot automation technology for chemical tank lorry unloading is presented. Handling chemical coupler between tank lorry and ACQC system may be hazardous or toxic to human operators, therefore robot automation is essential. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, compliance between male and female couplers should be introduced with 6-axis compliance device with F/T sensing. The proposed robot automation system consists of a collaborative robot, 6-ax is compliance device with F/T sensing, linear gripper, and robot vision. The position/force control algorithm and experimental results for assembling chemical couplers are presented.

Part tolerancing through multicale defect analysis

  • Petitcuenot, Mathieu;Anselmetti, Bernard
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • When manufactured parts undergo large deformations during the manufacturing process, the global specifications of a part based on the concept of tolerance zone defined in the ISO 1101 standard [1] enable one to control the part's global defects. However, the extent of this tolerance zone is too large when the objective is to minimize local defects, such as hollows and bumps. Therefore, it is necessary to address local defects and global defects separately. This paper refers to the ISO 10579 standard [2] for flexible parts, which enables us to define a stressed state in order to measure the part by straightening it to simulate its position in the mechanism. The originality of this approach is that the straightening operation is performed numerically by calculating the displacement of a cloud of points. The results lead to a quantification of the global defects through various simple models and enable us to extract local defects. The outcome is an acceptable tolerance solution. The procedure is first developed for the simple example of a steel bar with a rectangular cross section, then applied to an industrial case involving a complex 3D surface of a turbine blade. The specification is described through ISO standards both in the free state and in the straightened state.

A Study on the Sliding Ball Joint of Parallel Kinematic Mechanism (병렬 운동 기구의 미끄럼 볼 조인트 개발에 관한 연구)

  • Yoo, Dae-Won;Lee, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.982-989
    • /
    • 2009
  • Parallel Kinematic Mechanism (PKM) is a device to perform the various motion in three-dimensional space and it calls for six degree of freedom. For example, Parallel Kinematic Mechanism is applied to machine tools, medical equipments, MEMS, virtual reality devices and flight motion simulators. Recently, many companies have tried to develop new Parallel Kinematic Mechanism in order to improve the cycle time and the precisional tolerance. Parallel Kinematic Mechanism uses general universal joint and spherical joint, but such joints have accumulated tolerance problems. Therefore, it causes position control problem and dramatically life time reduction. This paper focused on the rolling element to improve sliding precision in new sliding ball joint development. Before the final design and production, it was confirmed that new sliding ball joint held a higher load and a good geometrical structure. FEM analysis showed a favorable agreement with tensile and compressive testing results by universal testing machine. In conclusions, a new sliding ball joint has been developed to solve a problem of accumulated tolerance and verified using tensile and compressive testing as well as FEM analysis.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Improvement of Detection Performance of a Tag response signal in ISO/IEC 18000-6 Type-B Readers (ISO/IEC 18000-6 Type-B RFID 리더의 태그 응답신호 검출 성능 향상)

  • Choi, Woo-Seok;Suh, Ki-Hwan;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1C
    • /
    • pp.59-66
    • /
    • 2007
  • This paper proposes a windowing method to reduce noise effect and bit synchronization error caused by tolerance of a tag-response signal for ISO/IEC 18000-6 type-B readers. A tag response signal has very weak power because of a back-scattering modulation scheme and thus may be sensitive to noise. In addition, bit tolerance admitted in a tag response signal requires robust timing synchronization because it affects readers' detection performance. To reduce the two undesirable effects in a tag signal, we acquire bit transition position by using variable windows from over-sampled data, and average whole data in one bit duration. With a hardware system adopting the proposed method, we tested and verified its performance.