DOI QR코드

DOI QR Code

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong (School of Automation, Northwestern Polytechnical University, and Shaanxi Key Laboratory of Small & Special Electrical Machine and Drive Technology) ;
  • Liu, Jinglin (School of Automation, Northwestern Polytechnical University, and Shaanxi Key Laboratory of Small & Special Electrical Machine and Drive Technology) ;
  • Hu, Yihua (Dept. of Electrical Engineering and Electronics, University of Liverpool) ;
  • Zhang, Xiaokang (School of Automation, Northwestern Polytechnical University, and Shaanxi Key Laboratory of Small & Special Electrical Machine and Drive Technology) ;
  • Ni, Kai (Dept. of Electrical Engineering and Electronics, University of Liverpool) ;
  • Si, Jikai (School of Electrical Engineering and Automation, Henan Polytechnic University)
  • Received : 2017.07.24
  • Accepted : 2018.04.24
  • Published : 2018.09.01

Abstract

High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

Keywords

References

  1. J. D. Lu, X. K. Zhang, Y. H. Hu, J. L. Liu, C. Gan, and Z. Wang, "Independent phase current reconstruction strategy for IPMSM sensorless control without using null switching states," IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4492-4502, June 2018. https://doi.org/10.1109/TIE.2017.2767542
  2. X. G. Zhang, and Z. X. Li, "Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor," IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5732-5745, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2495183
  3. R. Z. Haddad, and E. G. Strangas, "On the accuracy of fault detection and separation in permanent magnet synchronous machines using MCSA/MVSA and LDA," IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 924-934, Sep. 2016. https://doi.org/10.1109/TEC.2016.2558183
  4. Q. An, J. Liu, Z. Peng, L. Sun, and L. Z. Sun, "Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter," IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8329-8342, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2520999
  5. Y. Sangsefidi, S. Ziaeinejad, and A. M. Sani, "Sensorless speed control of synchronous motors: analysis and mitigation of stator resistance error," IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 540-548, Jun. 2016. https://doi.org/10.1109/TEC.2015.2492951
  6. P. L. Xu, and Z. Q. Zhu, "Novel carrier signal injection method using zero-sequence voltage for sensorless control of PMSM drives," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2053-2061, Apr. 2016. https://doi.org/10.1109/TIE.2015.2506146
  7. B. C. Du, S. P. Wu, S. L. Han, and S. M. Cui, "Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor," IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3019-3027, May 2016. https://doi.org/10.1109/TIE.2016.2518123
  8. Y. C. Chang, C. H. Chen, Z. C. Zhu, and Y. W. Huang, "Speed control of the surface-mounted permanent-magnet synchronous motor based on takagi-sugeno fuzzy models," IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6504-6510, Sep. 2016. https://doi.org/10.1109/TPEL.2015.2504392
  9. X. D. Song, J. C. Fang, B. C. Han, and S. Q. Zheng, "Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error," IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1438-1449, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2423319
  10. Y. Zhao, Z. Zhang, W. Qiao, and L. Wu, "An extended flux model-based rotor position estimator for sensorless control of salient-pole permanent-magnet synchronous machines," IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4412-4422, Aug. 2015. https://doi.org/10.1109/TPEL.2014.2358621
  11. T. N. Shi, Z. Wang, and C. L. Xia, "Speed measurement error suppression for PMSM control system using self-adaption kalman observer," IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 2753-2763, May 2015. https://doi.org/10.1109/TIE.2014.2364989
  12. N. K. Quang, N. T. Hieu, and Q. P. Ha, "FPGA-based sensorless PMSM speed control using reduced-order extended kalman filters," IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574-6582, Dec. 2014. https://doi.org/10.1109/TIE.2014.2320215
  13. K. Y. Lu, X. Lei, and F. Blaabjerg, "Artificial inductance concept to compensate nonlinear inductance effects in the back EMF-based sensorless control method for PMSM," IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 593-600, Sep. 2013. https://doi.org/10.1109/TEC.2013.2261995
  14. J. D. Lu, Y. H. Hu, X. K. Zhang, Z. Wang, J. L. Liu, and C. Gan, "High frequency voltage injection sensorless control technique for IPMSMs fed by a three-phase four-switch inverter with a single current sensor," IEEE/ASME Trans. Mechatronics, vol. 23, no. 2, pp. 758-768, April, 2018. https://doi.org/10.1109/TMECH.2018.2803772
  15. D. D. Reigosa, D. Fernandez, Z. Q. Zhu, and F. Briz, "PMSM magnetization state estimation based on stator-reflected PM resistance using high-frequency signal injection," IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3800-3810, Sep./Oct. 2015. https://doi.org/10.1109/TIA.2015.2437975
  16. G. Xie, K. Y. Lu, S. K. Dwivedi, R. J. Riber, and W. M. Wu, "Permanent magnet flux online estimation based on zero-voltage vector injection method," IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6506-6509, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2439718
  17. M. Seilmeier, and B. Piepenbreier, "Sensorless control of PMSM for the whole speed range using two-degree-of-freedom current control and HF test current injection for low-speed range," IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4394-4403, Aug. 2015. https://doi.org/10.1109/TPEL.2014.2353215
  18. P. L. Xu, and Z. Q. Zhu, "Novel square-wave signal injection method using zero-sequence voltage for sensorless control of PMSM drives," IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7444-7454, Dec. 2016. https://doi.org/10.1109/TIE.2016.2593657
  19. Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, "High-bandwidth sensorless algorithm for ac machines based on square-wave-type voltage injection," IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, May/Jun. 2011. https://doi.org/10.1109/TIA.2011.2126552
  20. J. M. Liu, and Z. Q. Zhu, "Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame," IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 171-180, Jun. 2014. https://doi.org/10.1109/JESTPE.2013.2295395
  21. M. Gu , S. Ogasawara, and M. Takemoto, "Novel PWM schemes with multi SVPWM of sensorless IPMSM drives for reducing current ripple," IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6461-6475, Sep. 2016. https://doi.org/10.1109/TPEL.2015.2500364
  22. A. Gaeta, G. Scelba, and A. Consoli, "Sensorless vector control of PM synchronous motors during single-phase open-circuit faulted conditions," IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1968-1979, Nov./Dec. 2012. https://doi.org/10.1109/TIA.2012.2226192
  23. P. L. Xu, and Z. Q. Zhu, "Carrier signal injection-based sensorless control for permanent-magnet synchronous machine drives considering machine parameter asymmetry," IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2813-2824, May 2016. https://doi.org/10.1109/TIE.2015.2510979
  24. P. L. Xu, Z. Q. Zhu, and D. Wu, "Carrier signal injection-based sensorless control of permanent magnet synchronous machines without the need of magnetic polarity identification," IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3916-3926, Sep./Oct. 2016. https://doi.org/10.1109/TIA.2016.2560803
  25. S. Medjmadj, D. Diallo, M. Mostefai, C. Delpha, and A. Arias, "PMSM drive position estimation: contribution to the high-frequency injection voltage selection issue," IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 349-358, Mar. 2015. https://doi.org/10.1109/TEC.2014.2354075
  26. G. L. Wang, L. Yang, G. Q. Zhang, and D. G. Xu, "Comparative investigation of pseudorandom high-frequency signal injection schemes for sensorless IPMSM drives," IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2123-2132, Mar. 2017. https://doi.org/10.1109/TPEL.2016.2569418
  27. M. Seilmeier, S. Ebersberger, and B. Piepenbreier, "HF test current injection-based self-sensing control of PMSM for low- and zero-speed range using two-degree-of-freedom current control," IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2268-2278, May/Jun. 2015. https://doi.org/10.1109/TIA.2014.2369828
  28. G. Xie, K. Y. Lu, S. K. Dwivedi, J. R. Rosholm, and F. Blaabjerg, "Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations," IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1785-1794, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2426200
  29. K. Liu, and Z. Q. Zhu, "Position-offset-based parameter estimation using the adaline NN for condition monitoring of permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2372-2383, Apr. 2015. https://doi.org/10.1109/TIE.2014.2360145
  30. T. Szalai, G. Berger, and J. Petzoldt, "Stabilizing sensorless control down to zero speed by using the high-frequency current amplitude," IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3646-3656, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2279405
  31. G. L. Wang, R. F. Yang, and D. G. Xu, "DSP-based control of sensorless IPMSM drives for wide-speed-range operation," IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 720-727, Feb. 2013. https://doi.org/10.1109/TIE.2012.2205360