• Title/Summary/Keyword: Position Servo Control

Search Result 482, Processing Time 0.04 seconds

AC Servo Motor Position and Speed Control Characteristics of CNC Machine Tools (CNC 공작기계의 AC 서보 모터의 위치 및 속도 제어 특성)

  • 박인준;백형래;정헌상;정수복;최송철
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.352-356
    • /
    • 1998
  • This paper is a study about Ac servo motor position and speed control characteristics which depend on feedforward control, the acceleration / deceleration time constant after the interpolation, and PI control, automatic deceleration at corner in order to shape cutting control of feed drive system of the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control. The shape error generated by the position command delay is minimized by using the acceleration / deceleration time constant after the interpolation. The results were verified to optical machining center experimentation of the machine tool.

  • PDF

An Acceleration Control Type of DC Servo-motor for Stiffness Improving (견실성 향상을 위한 직류서어보모터의 가속도제어)

  • 장기효;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 1990
  • DC servo motor has been often used as the position control system, because the performance is excellent on the velocity and position control system. When the unknow disturbance and accessible load torque are imposed on the position control of DC servo motor, this system has the steady and/or transient state error. In this paper, a new method which has high stiffness for reducing the error is proposed. This error will be reduced by acceleration control. The effectiveness of the acceleration control is confirmed by using computer simulation.

  • PDF

The Comparison Experiment of Rotation Range of RC Servo Motors According to change of a Periods (주기변화에 따른 RC 서보모터 회전범위 비교실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1179-1182
    • /
    • 2011
  • RC servos are electro-mechanical devices that respond to a control signal, which instructs them to move their output shaft to a certain position. A servo is normally plugged into a radio receiver with a three pin connector. The three wires are a power (usually 4.8V to 6.0V), a ground, and a signal wire. The signal wire carries a PWM (Pulse-Width Modulation) signal consisting of a 1-2msec pulse repeated 50 times a second. A 1.5msec pulse will tell the servo to move to its output shaft to the center position, 0 degrees. For a servo with a 180 degree of motion, a 1msec pulse will move the servo to -90 degrees, and a 2msec pulse will move the servo to +90 degrees. In order to development a humanoid robot, mechanical design, fixtures design, analysis of kinematics, implementation moving program, selection of RC servo motor and controller are required. This study was performed to experimentally compare the rotation range of RC servo motors according to change of a periods.

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF

A Study on the Force Control in Resistance Spot Welding Process Using a Servo-Gun (서보건을 이용한 저항 점 용접 공정의 가압력 제어)

  • 오우석;김규식;강윤배
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.599-602
    • /
    • 1999
  • In this paper, we attempt to control the pressure between two specimens using a servo gun in the resistance spot welding process. Servo guns have some advantages over pneumatic guns in that the fast response, the precise position control, and the accurate torque control are assured by virtue of the servo motor control. To demonstrate the practical significance of our results, we present some experimental results..

  • PDF

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

A Precision Position Control of Antenna Driving System in Naval Vessel (함상 안테나 구동용 안정화장치의 정밀 위치제어)

  • Cho, Taik-Dong;Seo, Song-Ho;Nam, Ki-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.190-196
    • /
    • 2001
  • The naval vessel must moves rolling, pitching, yawing by wave when it runs in ocean. Some narrow beam antenna needed position compensation by stabilizer or gimbal for best performance. This paper presents the precision position control for heavy weight(130kg) in roll and pitch direction. Generally it's called for gimbal. This gimbal uses P-I controller, and it's driven by linear actuator and servo motor. This gimbal gets ship's gyro signal and synchro, which have the absolute angle value. Some other similar equipments are driven by huge hydraulic power, but this gimbal is driven by small servo motor. This control loop gets the following procedure repeatedly; reading ship gyro and gimbal synchro, calculating compensated error and control output, driving motor and actuator The performance of gimbal system was satisfied.

  • PDF

A study on the control of DC servo motors and the position for robot (로보트를 위한 DC servo motor 구동과 위치 제어에 관한 연구)

  • 김성준;김형래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.41-44
    • /
    • 1986
  • Recently, the robot has been used in industries and laboratories for the automation and the coarse and hazardous environments. In this paepr, it was studied the robot using DC servo motors. In that maner, Gold Star educational robot "Top-1" which was drived by 6-step motors was rebuilt to the robot. "Kon Kuk-I" using 6-servo motors. Because the caracteristics of step motors were not fit well the differential change. For the precise robot control, it was designed the controller which was adopted the velocity mode control and the position mode control. It was studied also the supporting software for the robot motion. As the results of this experiments, it was found that the robot "Kon Kuk-I" moved smoothly and accurately.

  • PDF

DC Servo Motor Position Control System Based on Model Following Acceleration Control (모델추종 가속도제어기법을 이용한 직류서보전동기 위치제어계)

  • Park, Young-Jeen;Lee, Kee-Sang;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.261-264
    • /
    • 1995
  • A scheme of observer-based MFAC(Model Following Acceleration Control) system is proposed for the DC servo position control system. The proposed system is competed of MFAC, feedback controller, and reduced-order state observer. As the servo motor is controlled by the acceleration command, the total servo system becomes the acceleration control system. Simulation results show that the proposed system have robust properties against parameter variations and external disturbances.

  • PDF

Study on the Effective Operating Method of on-off Valves for a Pneumatic Servo System (개폐식 밸브를 사용한 공기압 서보 시스템의 효율적 밸브 개폐 방법에 관한 연구)

  • 황웅태;최서호;이정오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.109-116
    • /
    • 1998
  • This paper is concerned with effective operating method of pneumatic on-off valves for improving position control accuracy, valve life-time and position settling time using modified pulse width modulation with dead-zone (MPWMD). The pneumatic system using on-off valves has advantage of simple construction and low cost compared with a system with servo-valves. The performance of the proposed control method is investigated experimentally for the position control of a pneumatic cylinder using on-off valves. Experimental results show that the proposed algorithm for valve operation can be used to obtain fast and accurate position control compared to the conventional PWMD algorithm. It is also shown that the use of the proposed MPWMD algorithm for the position control significantly reduces the number of valve switching and noise.

  • PDF