• Title/Summary/Keyword: Position Sensorless Control

Search Result 339, Processing Time 0.028 seconds

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

Sensorless speed control of Permanent Magnet Synchronous Motor by Unscented Kalman filter (무향 칼만 필터에 의한 영구자석 동기 전동기 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.967-972
    • /
    • 2012
  • In order to implement good control of the permanent magnet synchronous motor(PMSM), the exact speed and rotor position information is needed.Recently, many studies have performed about sensorless speed control of the PMSM. This paper proposed sensorless speed controls of PMSM by using the Unscented Kalman Filter(UKF).The UKF is designed to eliminate the noise and get to the accuracy value and deals with the estimation of the speed and the rotor position of PMSM. Simulation and experiment have been performed for the verification of the proposed algorithm.

Consideration of the Carrier Based Signal Injection Method in Three Shunt Sensing Inverters for Sensorless Motor Control

  • Jung, Sungho;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1791-1801
    • /
    • 2016
  • This paper considers a carrier based signal injection method for use in the three shunt sensing inverter (TSSI) for sensorless motor control. It also analyzes the loss according to the injection axis of the voltage signal. To remove both the phase current and rotor position sensors, a sensorless method and a phase current reconstruction method can be simultaneously considered. However, an interaction between the two methods can be incurred when both methods inject voltage signals simultaneously. In this paper, a signal injection based sensorless method with the 120° OFF Discontinuous PWM (DPWM) is implemented in a TSSI to avoid this interaction problem. Since one leg does not have a switching event for one sampling period in the 120° OFF DPWM, the switching loss is altered according to the injection axis. The switching loss in the d-axis injection case can be up to 32% larger than that in the q-axis injection case. Other losses according to the injection axis are also analyzed.

Position Sensorless Starting of BLDC Motor for Compressor (압축기용 BLDC 전동기의 센서리스 기동)

  • Lee, Kwang-Woon;Lee, Joon-Hwan;Choi, Jae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.440-446
    • /
    • 2006
  • The magnitude of output torque in a BLDC Motor depends on torque angle so that the exact initial position of rotor is essentially required for good starting. This paper presents a novel starting control method for smooth starting in a position-sensorless controlled BLDC motor drive for reciprocating compressor of refrigerator. The proposed method starts a BLDC motor using information on the initial position of rotor, determined from current response characteristics, and shows robust starting capability to starting load variations. The effectiveness of the proposed method is verified through experimental results.

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

Sensorless Drive of Brushless DC Motors Using an Unknown Input Observer (미지입력 관측기를 이용한 BLDC 전동기 센서리스 드라이브에 대한 연구)

  • Ryu, Ji-Su;Hyun, Dong-Seok;Kim, Tae-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • In this paper, a novel motor control method is proposed to improve the performance of sensorless drive of BLDC motors. In the terminal voltage sensing method, which is a great portion of sensorless control, a precise rotor position cannot be obtained when excessive input is applied to the drive during synchronous operation mode. Especially in the transient state, the response characteristic decreases. To cope with this problem, the unknown input (back-EMF) is modelled as the additional state of system in this paper. Taking into account the disturbance adopted by the back-EMF, the observer can be obtained by the augmented system equation. An algorithm to detect the back-EMF of the BLDC motor using the state observer is constructed. As a result, the novel sensorless drive of BLDC motors that can strictly estimate rotor position and speed is proposed.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

A Novel Rotor Position Estimation Method using a Rotation Matrix for a Square-Wave Signal Injected Sensorless Control in IPMSM (IPMSM의 맥동하는 구형파 신호 주입 센서리스 제어를 위한 정지좌표계상에서의 새로운 위치 추정 기법)

  • Kim, Sang-Il;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2016
  • In this study, a novel rotor position sensorless estimation method of an interior permanent-magnet synchronous motor is proposed. A square-wave pulsating voltage signal is injected in the estimated synchronous reference frame. This signal is interpreted in the stationary reference frame regardless of the estimated rotor position. Thus, assuming that the position error is nearly zero is unnecessary because the variables in the estimated synchronous reference frame are not used. The rotor position can be exactly calculated from two voltage references and three sampled current feedbacks in the stationary reference frame. The proposed method is easy to implement and helps enhance the bandwidth of the current controller. The validity of the proposed method is verified by simulations and experiments.

A Study on Sensorless Control of Switched Reluctance Generator Using Instantaneous Inductance (인덕턴스를 이용한 Switched Reluctance Generator의 위치센서 없는 구동에 관한 연구)

  • Oh, Sung-Bo;Kim, Young-Seok;Kim, Young-Jo;You, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.317-319
    • /
    • 2001
  • A Switched Reluctance Generator attracts much attention in the generator because of high efficiency, simplicity, and ruggedness. However, they require rotor position information to operate. In many systems, the rotor position sensor is expensive, limited and undesirable. This paper describes a new approach to estimating the rotor position of a SRG from the measured terminal voltage and current for rotor position sensorless control. The proposed method Is based on the instantaneous inductance of the SRG. The proposed technique is very simple and it is able to apply to high speed operation under the stable condition because of its simplicity. The initial rotor position estimation algorithm is efficient and reliable. The proposed method is verified by computer simulation.

  • PDF

The position detecting method in SRM using pattern of phase current (SRM의 상전류 패턴을 이용한 회전자 위치 검출기법)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.558-561
    • /
    • 2005
  • This paper describes a novel method of detecting excitation position in switched reluctance motor(SRM) drive. Some strategies of position sensorless control methods for the motor include the measurement of phase current and applied pulse voltage in an unexcited phase is suggested. The principle of the estimation of a rotor position is based on the detection of inductance by pulse currents. This sensorless method is very simple to detect excitation position estimation and gives efficient control of drive system. Suggested method is verified by some simulations.

  • PDF