• Title/Summary/Keyword: Position Operator

Search Result 268, Processing Time 0.035 seconds

Implementation and experiment of bilateral force control for a telemanipulator (원격조작기의 양방향 힘제어의 구현과 실험)

  • 천자홍;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.838-843
    • /
    • 1991
  • A telemanipulator that reflects grasping force of the slave gripper to the human operator was implemented in order for manipulation to be more delicate and safe. An industrial robot gripper was used as the slave manipulator. The master manipulator was constructed to make it easy for a human operator to direct the slave and to feel the reflected gripping force. Reflected force was generated by the servomotor of the master. The force signal and position signals of the master and the slave was used to generate driving force signal. Basically position-position type control was used. Miner force feedback is added to improve the performance of the system. Implemented system was tested by colliding two fingers of the slave manipulator, and here switching was used to archive more fast and easy manipulation.

  • PDF

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces (강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어)

  • Park, Heon;Lee, Sang-Chul;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

An intelligent mixed mode algorithm of a master controller using position and rate mode (위치.속도 제어 방식을 이용한 매스터 컨트롤러 지능형 혼합 제어 알고리즘)

  • 김기홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.245-248
    • /
    • 1997
  • The control modes used in teleoperation are position control mode, and rate control mode. This paper presents the problems of the conventional control modes, through simulation, proposes an intelligent mixed control mode that converts the operation mode between the position mode and the rate mode intelligently by judging the operator's intention using the real-time measurement data. The effectiveness of the proposed intelligent mixed control mode is demonstrated and compared to other typical control modes through simulation and actual experiment.

  • PDF

Texture Feature Analysis of Machined Surface Image Using Intensity Gradient (광 강도변화를 이용한 가공면 영상의 텍스쳐 특징분석)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.49-56
    • /
    • 1998
  • Super precision working technique and machine tool have been continually developed thanks to advanced electronic field. To obtain good result. it is necessary to investigate surface in grinding with $mu extrm{m}$ level. There were quite many researches to satisfy these demands by using non-contact methods through the computer vision. In this study, the texture of working surface was analyzed. co-occurrence matrices was obtained from the surface roughness. Texture parameter was obtained using position operator composed of $ heta$, d according to variation of angle direction and distance. As a result, it was found that surface texture was more affected by direction($\theta$) than distance(d).

  • PDF

Texture Analysis of Machined Surface Using Intensity Gradient (광 강도변화를 이용한 가공면의 텍스쳐 해석)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.316-322
    • /
    • 1998
  • Super precision working technique and machine tool have been developing continually thanks to advanced electronic field. To obtain good result. it is necessary to investigate surface state in grinding with ${\mu}{\textrm}{m}$ level. There were so many researches to satisfy these demands using non-contact methods through the computer vision. In this study, the texture of working surface was analyzed. cooccurrence matrice was obtained from the surface roughness. Texture parameter was obtained by means of position operator compose of $\theta$. d according to variation of angle direction and distance. As a result, it was found that surface texture was more effected by direction ($\theta$) then distance(d).

  • PDF

Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

A Study on Error Recovery Expert System Using a Superimposer and a Digitizer in the Advanced Teleoperator System

  • LEE, S.Y.;NAGAMACHI, M.;ITO, K.;LEE, C.M.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 1988
  • This paper designs, in the teleoperation task, the world coordinate system by the functional analysis of each of the robot joint so that the human operator performs easily the task. Also, it constructs the heuristic rules of the equal motion line coordinates for the position and the posture control of the robot within the knowledge base so that the robot hand reaches-possibly in any position of the robot's work space. As shown in the result of the experiments. the coordinate reading is easy because the work station is displayed to the high resolution by using the superimposer of the motion analysing computer system. Also. the task burden of the human operator reduces and the error recovery time reduces because the coordinates of the object is obtained just by touch using the digitizer.

  • PDF

Implementation of Bilateral Control of fuzzy Robot Hand using Analytic Hierachy Process (계층적 분석방법을 이용한 퍼지 로봇 핸드의 양방향 제어의 구현)

  • 진현수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2827-2830
    • /
    • 2003
  • Tele manipulator is distingushed from industrial robot by iterating same specified work. Manipulator operator is included in control loop for controlling the telemanipulator because he decide directly during the work and order controllabily reducing the modelling error of telemanipulator which depend on the PID controller. But position-force control method of bidirectional control impose unsafety of vibiration and Analytic Hierachy Method can stabilize for reducing nonlinear modelling error by expert operator because of transformation empirical control rule to linear model.

  • PDF

STOCHASTIC MEHLER KERNELS VIA OSCILLATORY PATH INTEGRALS

  • Truman, Aubrey;Zastawniak, Tomasz
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.469-483
    • /
    • 2001
  • The configuration space and phase space oscillatory path integrals are computed in the case of the stochastic Schrodinger equation for the harmonic oscillator with a stochastic term of the form (K$\psi$(sub)t)(x) o dW(sub)t, where K is either the position operator or the momentum operator, and W(sub)t is the Wiener process. In this way formulae are derived for the stochastic analogues of the Mehler kernel.

  • PDF