• Title/Summary/Keyword: Position Errors

Search Result 1,174, Processing Time 0.034 seconds

Measurement of Ir-192 Source Activity for High Dose Rate Brachytherapy (고 선량률 근접치료시 사용되는 Ir-192 선원의 방사능 평가)

  • 최동락;허승재;안용찬;임도훈;김대용;우홍균
    • Progress in Medical Physics
    • /
    • v.8 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • Ir-192 source activity for high dose rate brachytherapy is measured using Farmertype ionization chamber. The source-to-chamber distance is 10 cm and the measured charge unit is converted to activity unit. The measured values are compared to the values provided from vendor. Because of time dependency of Ir-192 source activity, the activities are regularly checked and compared to calculated values. As the accuracy of Ir-192 source activity is depend on the mechanical measurement setup, we estimated the precision of remote controlled source dwell position using home-made device and film scanner. The difference between measured and predicted dwell position is within 1 mm. As a result, the errors of source activity are 0.7${\pm}$1.5 % for measured and vendor-provided values and 0.l${\pm}$1.2% for measured and time-dependent calculated vlaues. In conclusion, our measured activity has been comparable to the values provided from vendor and our brachytherapy unit has been very accurate until now. Regular quality control of brachytherapy is essential for successful treatment which depends on the accuracy of source position and activity.

  • PDF

Application of Smartphone Camera Calibration for Close-Range Digital Photogrammetry (근접수치사진측량을 위한 스마트폰 카메라 검보정)

  • Yun, MyungHyun;Yu, Yeon;Choi, Chuluong;Park, Jinwoo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.149-160
    • /
    • 2014
  • Recently studies on application development and utilization using sensors and devices embedded in smartphones have flourished at home and abroad. This study aimed to analyze the accuracy of the images of smartphone to determine three-dimension position of close objects prior to the development of photogrammetric system applying smartphone and evaluate the feasibility to use. First of all, camera calibration was conducted on autofocus and infinite focus. Regarding camera calibration distortion model with balance system and unbalance system was used for the decision of lens distortion coefficient, the results of calibration on 16 types of projects showed that all cases were in RMS error by less than 1 mm from bundle adjustment. Also in terms of autofocus and infinite focus on S and S2 model, the pattern of distorted curve was almost the same, so it could be judged that change in distortion pattern according to focus mode is very little. The result comparison according to autofocus and infinite focus and the result comparison according to a software used for multi-image processing showed that all cases were in standard deviation less than ${\pm}3$ mm. It is judged that there is little result difference between focus mode and determination of three-dimension position by distortion model. Lastly the checkpoint performance by total station was fixed as most probable value and the checkpoint performance determined by each project was fixed as observed value to calculate statistics on residual of individual methods. The result showed that all projects had relatively large errors in the direction of Y, the direction of object distance compared to the direction of X and Z. Like above, in terms of accuracy for determination of three-dimension position for a close object, the feasibility to use smartphone camera would be enough.

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.

The Basic Study of Position Recognition Cow-teats Used Scanning Range Finder (레이저스캔 센서를 이용한 유두위치인식에 관한 기초연구)

  • Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study was conducted to verify the applicability of robot milking system through acquisition and analysis of model teat's position information using scanning range finder (SRF). Model teats, same size and shape as real teats, were designed to analyze the properties according to the material, distance error and angle error of the sensor. In addition, 2-dimensional distance information of each teats was obtained at same time with 4 teat models and the result were as follows. 1. In the case of the fingers on the experiment for selection of materials for teat model, the distance error was from 4.3 mm to 1.3 mm, average was 2.8 mm as a minimum record. In the case of rubber material, average distance error was 4.3 mm. So, this material was considered to be a most suitable model. 2. The distance error was maximum at 100 mm distance. The more distance increased, the less error increased up to 300 mm. Then the error increased after 300 mm and decreased again. 3. The maximum angle error of 10.1 mm was measured at $170^{\circ}$, in case of $70^{\circ}$ the error was 0.2 mm as a minimum value. There was no specific tendency to error of angle. 4. In the 2-dimensional location error for 4 teat models, distance error was 3.8 mm as minimum and 7.2 mm as maximum. The angle error was $1.2^{\circ}$ as maximum. All of errors were included within the accuracy of sensor, the robot milking system was considered to be applicable to measure the distance of teats due to the measuring velocity of SRF and the hole size of teat-cup.

Development of Proportional Valve Actuator Controller for Industrial Site (산업용 밸브 액추에이터 비례제어 컨트롤러 개발)

  • Park, Han Young;Kim, Jin Young;Ahn, Sung Soo;Kang, Joonhee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • To proportionally control the electronic valve position of the actuator, we designed and fabricated PCU, CPT, and rotary absolute optical encoder for the detection of absolute angular position in the actuator. We also designed and constructed the test system by using DAQ hardware and Labview. We designed PCU to convert 1-5 V, 0-5 V, 0-10 V, 2-10 V voltage signals and 4-20 mA current signals to the voltage signals in the common 0.5-2.5 V range. We designed CPT to output 4-20 mA current signals corresponding to the valve positions based on the PWM signal input from the MCU. We also designed 20 bit optical encoder by using infrared LED and infrared transistor and made the serial communication with the main board possible. When we tested PCU and CPT with DAQ hardware and Labview software, they operated correctly with the small errors within ${\pm}0.003$ V and ${\pm}0.01$ mA, respectively, showing that our actuator has the excellent performance to employ as the industrial proportional-valve-actuator. The resolution of the encoder was $11.25^{\circ}$ and the maximum revolution to detect was 32,768.

A Study on Human Error of DP Vessels LOP Incidents (DP 선박 위치손실사고의 인적오류에 관한 연구)

  • Chae, Chong-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.515-523
    • /
    • 2015
  • This study reviewed 612 DP LOP(Loss of Position) incident reports which submitted to IMCA from 2001~2010 and identified 103 human error caused incidents and classified it through HFACS. And, this study analysis of conditional probability of human error on DP LOP incidents through application of bayesian network. As a result, all 103 human error related DP LOP incidents were caused by unsafe acts, and among unsafe acts 70 incidents(68.0 %) were related to skill based error which are the largest proportion of human error causes. Among skill based error, 60(58.3%) incidents were involved inadvertent use of controls and 8(7.8%) incidents were involved omitted step in procedure. Also, 21(20.8%) incidents were involved improper maneuver because of decision error. Also this study identified that unsafe supervision(68%) is effected as the largest latent causes of unsafe acts through application to bayesian network. As a results, it is identified that combined analysis of HFACS and bayesian network are useful tool for human error analysis. Based on these results, this study suggest 9 recommendations such as polices, interpersonal interaction, training etc. to prevent and mitigate human errors during DP operations.

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

Evaluation of Error Factors in Quantitative Analysis of Lymphoscintigraphy (Lymphoscintigraphy의 정량분석 시 오류 요인에 관한 평가)

  • Yeon, Joon-Ho;Kim, Soo-Yung;Choi, Sung-Ook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • Purpose: Lymphoscintigraphy is absolutely being used standard examination in lymphatic diagnosis, evaluation after treatment, and it is useful for lymphedema to plan therapy. In case of lymphoscintigraphy of lower-extremity lymphedema, it had an effect on results if patients had not pose same position on the examination of 1 min, 1 hour and 2 hours after injection. So we'll study the methods to improve confidence with minimized quantitative analysis errors by influence factors. Materials and Methods: Being used the Infinia of GE Co. we injected $^{99m}Tc$-phytate 37 MBq (1.0 mCi) 4 sylinges into 40 people's feet hypodermically from June to August 2010 in Samsung Medical Center. After we acquired images of fixed and unfixed condition, we confirmed the count values change by attenuation of soft tissue and bone according to different feet position. And we estimated 5 times increasing 2 cm of distance between $^{99m}Tc$ point source and detector each time to check counts difference according to distance change by different feet position. Finally, we compared 1 and 6 min lymphoscintigraphy images with same position to check the effect of quantitative analysis results owing to difference of amounts of movement of the $^{99m}Tc$-phytate in the lymphatic duct. Results: Percentage difference regarding error values showed minimum 2.7% and maximum 25.8% when comparing fixed and unfixed feet position of lymphoscintigraphy examination at 1 min after injection. And count values according to distance were 173,661 (2 cm), 172,095 (4 cm), 170,996 (6 cm), 167,677 (8 cm), 169,208 counts (10 cm) which distance was increased interval of 2 cm and basal value was mean 176,587 counts, and percentage difference values were not over 2.5% such as 1.27, 1.79, 2.04, 2.42, 2.35%. Also, Assessment results about amounts of movement in lymphatic duct within 6 min until scanning after injection showed minimum 0.15%, and maximum 2.3% which were amounts of movement. We can recognize that error values represent over 20% due to only attenuation of soft tissue and bone except for distance difference (2.42%) and amounts of movement in lymphatic duct (2.3%). Conclusion: It was show that if same patients posed different feet position on the examination of 1 min, 1 hour and 2 hours after injection in the lymphoscintigraphy which is evaluating lymphatic flow of patients with lymphedema and analyzing amount of intake by lymphatic system, maximum error value represented 25.8% due to attenuation of soft tissue and bone, and PASW (Predictive Analytics Software) showed that fixed and unfixed feet position was different each other. And difference of distance between detector and feet and change of count values by difference of examination beginning time after injection influence on quantitative analysis results partially. Therefore, we'll make an effort to fix feet position and make the most of fixing board in lymphoscintigraphy with quantitative analysis.

  • PDF

Assessment of antero-posterior skeletal relationships in adult Korean patients in the natural head position and centric relation (자연 두부 위치 및 안정위에서 한국 성인 환자 골격의 전.후 관계 결정)

  • Ahn, Jang-Hoon;Bae, Kwang-Hak;Park, Young-Ju;Hong, Ryoon-Ki;Nam, Joeng-Hun;Kim, Mi-Ja
    • The korean journal of orthodontics
    • /
    • v.40 no.6
    • /
    • pp.421-431
    • /
    • 2010
  • Objective: This study aimed to verify the intra-individual reproducibility of the natural head position (NHP) in adult Korean patients in the centric relation (CR) position and to prove the inter-individual variability of the Frankfurt horizontal (FH) plane and sella-nasion (SN) line compared to the true horizontal line (THL). In addition, the study aimed to investigate the correlations between linear measurements from A-point and B-point to the nasion true vertical line (NTVL) and angular measurements from A-point and B-point to the SN line. Methods: Two lateral cephalograms were taken of 116 subjects (23 males, 93 females) with CR wax bites in a NHP at a one-week interval. Results: Method errors of three variables and intraclass correlation coefficients of six parameters proved the intra-individual reproducibility of NHP (p < 0.001). The angle of the FH to the THL was not significantly different from $0^{\circ}$ (p > 0.05), but it was clinically variable (SD $3.89^{\circ}$) on the inter-individual level. Conversely, the angle of the SN line to the THL was significantly different from $7^{\circ}$ (p < 0.05). Very low correlation was found between the linear measurements and angular measurements of A-point and B-point (p < 0.01). Conclusions: The NTVL could be a useful reference line for assessing the antero-posterior position of the maxilla and mandible of Korean adult patients in NHP and CR.