• 제목/요약/키워드: Position Errors

검색결과 1,179건 처리시간 0.03초

스크린도어용 다이렉트 드라이브 모터 성능개선을 위한 자기식 센서의 고조파 저감 연구 (Study of Magnetic Sensor Harmonic Reduction to Improve Direct Driven Motors Performance Applied to Platform Screen Doors)

  • 김연수;이주
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1645-1650
    • /
    • 2015
  • This paper presents the 3-dimensional electromagnetic field analysis method and correction of sensor distortion that is used by a motor speed sensor. The magnetic sensors are being expanded due to lower price than the other speed sensors such as resolver and encoder. Magnetic sensor generates sine and cosine waves when the motor rotates. However, the sine and cosine signals are distorted due to magnetic noise, which makes the angle error of the sensor, generated near by the Hall element. This paper defines an optimal design variables by using the Taguchi method to minimize output distortion of the magnetic sensor and permanent magnet. To enhance reliability of the magnetic position sensor from sensitivity error, assembly amplitude mismatch and the electrical angle, 3-Dimensional electromagnetic finite element method and correction algorithm errors were performed in due of the magnetic sensor in order to improve the quality of the initial production model.

3차원 자세 결정용 GPS 수신기를 이용한 CDGPS/INS 통합 시스템 설계 (A Development of CDGPS/INS integrated system with 3-dimensional attitude determination GPS Receiver)

  • 이기원;이재호;서흥석;성태경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2075-2077
    • /
    • 2001
  • For precise positioning, GPS carrier measurements are often used. In this case, accurate position having mm${\sim}$cm error can be obtained. For 3D positioning, in CDGPS, more than five carrier phase measurements are required. When GPS signals are blocked or carrier phase measurements are insufficient, it cannot provide positioning solution. By integrating CDGPS with INS, continuity of positioning solution can be guaranteed. However, when a vehicle moves in low speed or in stationary, the CDGPS/INS integrated system is difficult to compensate INS attitude errors because GPS velocity error become relatively lange. In this paper, we used the 3D attitude GPS receiver to compensate the INS attitude error. By field experiments, it is shown that the proposed integration system maintains the navigation performance even when a vehicle is in low speed or GPS signal is blocked for a period of time.

  • PDF

Inference on the Joint Center of Rotation by Covariance Pattern Models

  • Kim, Jinuk
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.127-134
    • /
    • 2018
  • Objective: In a statistical linear model estimating the center of rotation of a human hip joint, which is the parameter related to the mean of response vectors, assumptions of homoscedasticity and independence of position vectors measured repeatedly over time in the model result in an inefficient parameter. We, therefore, should take into account the variance-covariance structure of longitudinal responses. The purpose of this study was to estimate the efficient center of rotation vector of the hip joint by using covariance pattern models. Method: The covariance pattern models are used to model various kinds of covariance matrices of error vectors to take into account longitudinal data. The data acquired from functional motions to estimate hip joint center were applied to the models. Results: The results showed that the data were better fitted using various covariance pattern models than the general linear model assuming homoscedasticity and independence. Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from those of the general linear model. The estimated standard errors of the joint center for covariance pattern models showed a large difference with those of the general linear model.

고배율 광학현미경의 초정밀 능동 자동초점방법 (Active auto-focusing of high-magnification optical microscopes)

  • 이호재;이상윤;김승우
    • 한국광학회지
    • /
    • 제7권2호
    • /
    • pp.101-111
    • /
    • 1996
  • 최근들어 반도체 산업의 자동검사장비에 고배율 광학현미경이 많이 사용되고 있다. 이러한 고배율 광학현미경에 있어서 선결과제가 물체를 광학현미경에 사용된 대물렌즈의 초점심도 내에 위치시키는 초점맞춤작업이다. 본 논문에서는 광삼각법을 기본구성으로하고 수광부에 2개의 2분할소자를 사용함으로써 물체의 표면상태에 둔감하면서 물체의 초점오차량에는 매우 민감한 초점오차신호를 만들어줄 수 있는 새로운 자동초점방법을 소개하였다. 얻어진 실험결과에 의하면 이 방법의 신호분해능은 5nm이며, 반복능은 0.5.mu.m이다.

  • PDF

회전체의 효과적인 3차원 위치오차 측정방법 (A Useful Technique for Measuring the 3-dimensional Positioning of a Rotating Object)

  • 이응석;위현곤;정주노
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.918-924
    • /
    • 1997
  • A method for measuring the accuracy of rotating objects was studied. Rotating axis errors are significant; such as the spindle error of a manufacturing machine which results in the surface roughness of machined work pieces. Three capacitance type displacement sensors were used to measure the rotating master ball position. The sensors were mounted to the three orthogonal points on the spindle axis. The measurement data were analyzed and shown for rotating spindle accuracy, not only for average roundness error but also for spindle volumetric positional error during the revolutions. This method is simple and economical for industrial field use with regular inspection of rotating machines using portable equipment. Measuring and analyzing time using this method takes only a couple of hours. This method can also measure microscopic amplitude and 3-dimensional direction of vibrating objects.

IRS-1C 위성데이타를 이용한 수치표고모델 생성에 관한 연구 (A Study on the Generation of Digital Elevation Model from IRS-1C Satellite Image Data)

  • 안기원;이효성;서두천;신석효
    • 한국측량학회지
    • /
    • 제17권3호
    • /
    • pp.293-300
    • /
    • 1999
  • IRS-1C PAN의 수치화상데이터를 사용하여 수치표고모델을 생성하는 기법을 연구하였다. 번들조정기법을 적용하여 라인별 외부표정요소를 결정하였으며, 그 결과 위성의 자세와 위치 모두에 있어서 1차다항식이 가장 유효하였다. 수치표고모델과 정사투영화상을 생성한 후, 연구 대상영역내의 상이한 표고를 가지고 있는 16점의 평가점을 선정하여, 연구결과의 지도좌표와 비교해본 결과, 표고오차의 RMSE가 $\pm{16.66m}$인 수치표고 모델을 생성할 수 있었다.

  • PDF

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

소구경 탄자 연발사격 시 콘크리트 관입깊이 오차 상쇄 실험 연구 (Experimental Study of Error Canceling on the Piercing Depth of Concrete by Single Shot and Barrage of Small Caliber Bullets)

  • 임채연;김국주;박영준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.35-36
    • /
    • 2019
  • Major influence factors for piercing depth of concrete against small caliber bullet are target's property such as compression strength of concrete and bullet's property such as the velocity and weight of it. In particular about the bullet's property, velocity and incidence angle could be controlled by specific position or distance between targets and shooter, but the angle of yaw of bullet dose not. Because the the angle of yaw of bullet causes lower piercing force of bullet, some errors on piercing depth of concrete could be appeared by live fire test for the evaluation of protective performance. Therefore, we have checked the error canceling effect on the piercing depth of concrete by single shot and barrage of small caiber bullets. As a result, we identified that the error of piercing depth by the angle of yaw of bullet could be cancelled by barrage.

  • PDF

Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

  • Lim, Cheolsoon;Lee, Yebin;Cha, Yunho;Park, Byungwoon;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.251-261
    • /
    • 2022
  • The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) - Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan's GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.