• Title/Summary/Keyword: Position Errors

Search Result 1,179, Processing Time 0.03 seconds

INS/GPS Integration System Using Adaptive Filter with Estimating Measurement Noise Variance (측정잡음 분산추정 적응필터를 이용한 INS/GPS 결합 시스템)

  • Yu, Myeong-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.688-693
    • /
    • 2007
  • The INS/GPS integration system is designed by employing an adaptive filter that can estimate the measurement noise variance using the residual of the filter. To verify the efficiency of the proposed loosely-coupled INS/GPS integration system, simulation is performed by assuming that GPS information has large position errors. Simulation results show that the proposed integration system with the adaptive filter is more effective in estimating the position and attitude errors than those with the Extended Kalman Filter.

The Dynamic Path-Following using the Path-Observer for Wheeled Mobile Robots (경로관측기를 이용한 이동로봇의 능동경로추종)

  • Lee, Sang-Daek;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.383-385
    • /
    • 1996
  • In this paper, the dynamic path-following using the path-observer is proposed to improve the stability when initial position errors are considered. The dynamic path-following without the path-observer cannot follow reference path when initial position errors are large, so we propose the path-observer method. Finally, the results of simulation will be described.

  • PDF

Precise Position Synchronous Control of Two Axes Rotating Systems (2축 연속회전시스템의 고정도 위치동기제어)

  • Jeong, Seok-Kwon;Kim, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.311-313
    • /
    • 2001
  • This paper deals with a precise position synchronous control of two axes rotating systems by a cooperative control method. The system's dynamics including motor drives described by a motor circuit equation and Newton's kinetic formulation about rotating system. Current and speed controllers are designed very simply by conventional PID control law. Also, position synchronous controller designed to minimize position errors according to integration of speed errors between two motors. Then, the proposed control enables the distributed drives by a software control algorithm to behave in a way as if they are mechanically hard coupled in axes. Finally, the validity of the proposed system is confirmed through some simulations and experiments.

  • PDF

Position Control of an Inverted Pendulum on an Inclined Railway (경사진 궤도에서 도립진자의 위치제어)

  • Lee, Jun-Beom;Choi, Ho-Joon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2170-2172
    • /
    • 2003
  • This paper presents the position tracking control of an inverted pendulum on an inclined railway. In general, inclining the railway leads to errors in the pendulum angle even though the pendulum is stabilized, which results in errors in the cart position. To solve this problem, a linear quadratic regulation (LQR) controller with an integrator is used for compensating the resulting error in the cart position. The proposed method is evaluated by comparing LQR controllers with and without an integrator. Experimental results show that the LQR controller with an integrator is better in performance than one without an integrator.

  • PDF

The Analysis of Motion Error in Scanning Type XY Stage (스캐닝 방식 XY 스테이지의 운동오차 분석)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Method for Measuring Absolute Position of a Yard Crane for Port Automation (항만 자동화를 위한 야드 크레인의 절대위치 측정 기법)

  • 전태원;유우종;이홍희;김흥근;노의철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.163-170
    • /
    • 2004
  • Since 1960s, a container shipping volume has increased dramatically and continuous on a trend of rapid growth, and so the number of containers handled at the port increases. The position measurement of the yard crane is very important for improving the operating efficiency of the port. This paper describes the method to measure the absolute position of yard crane accurately and rapidly, using both the output pulse of an encoder and infrared sensors. The crane position is calculated by counting the output pulse of an incremental encoder, which is mounted on the wheel in the crane. By the way, the wheel slippage on rail may cause some errors in the crane position information obtained from encoder pulse, and the infrared sensor is used to compensate for errors in the crane position information. The performance of proposed method is verified on experimental results with the simulator of yard crane, the size of which is about 1/10 with the real crane.

A Study On Perception Errors of Korean Stops: Focused on Aspiration (한국어 청자의 한국어 폐쇄음 청취오류: 기식성을 중심으로)

  • Kim Hoseong
    • MALSORI
    • /
    • no.45
    • /
    • pp.23-33
    • /
    • 2003
  • This is a study on perception errors of Korean stops in word initial position. This study will show how listeners perceive manipulated Korean stops through two experiments and I will analyze why they are confused. In addition, 1 will show those perception errors not only reflect the relationship between the place and manner of articulation but also ate deeply related to the length of aspiration.

  • PDF

A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill (측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구)

  • Jeon, Du-Seong;Seo, Tae-Il;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

Localization of Outdoor Wheeled Mobile Robots using Indirect Kalman Filter Based Sensor fusion (간접 칼만 필터 기반의 센서융합을 이용한 실외 주행 이동로봇의 위치 추정)

  • Kwon, Ji-Wook;Park, Mun-Soo;Kim, Tae-Un;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.800-808
    • /
    • 2008
  • This paper presents a localization algorithm of the outdoor wheeled mobile robot using the sensor fusion method based on indirect Kalman filter(IKF). The wheeled mobile robot considered with in this paper is approximated to the two wheeled mobile robot. The mobile robot has the IMU and encoder sensor for inertia positioning system and GPS. Because the IMU and encoder sensor have bias errors, divergence of the estimated position from the measured data can occur when the mobile robot moves for a long time. Because of many natural and artificial conditions (i.e. atmosphere or GPS body itself), GPS has the maximum error about $10{\sim}20m$ when the mobile robot moves for a short time. Thus, the fusion algorithm of IMU, encoder sensor and GPS is needed. For the sensor fusion algorithm, we use IKF that estimates the errors of the position of the mobile robot. IKF proposed in this paper can be used other autonomous agents (i.e. UAV, UGV) because IKF in this paper use the position errors of the mobile robot. We can show the stability of the proposed sensor fusion method, using the fact that the covariance of error state of the IKF is bounded. To evaluate the performance of proposed algorithm, simulation and experimental results of IKF for the position(x-axis position, y-axis position, and yaw angle) of the outdoor wheeled mobile robot are presented.

Construction of Management System of Road Position Information Using GPS Surveying Data

  • Kim, Jin-Soo;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • This study aims to construct a management system of road position information as part of the build-up to a maintenance and management system of highways. First, information on the positions of the roads were obtained by a real-time kinematic satellite surveying, and then the degree of accuracy was analyzed in comparison with the data of the existing design drawings. The linear coordinates of road center line obtained by using RTK GPS showed about 7.6-13.2cm errors in X and Y directions in the case of the national road No.2 section, and about 8.4-9.2cm errors in the case of local road No.1045 section. These errors were within the tolerance scope regulated by the TS survey, and could be practically used. In the case of vertical alignment, there were about 6.2cm errors in the Z direction in local road No.1045 section. Aerial photographs are normally used in producing numerical maps, and it can be practically used because the tolerance scope of the elevation control point is l0cm when the scale of aerial photographs is 1/1000. The management system of road position information, utilizing Object-Oriented Programming(OOP), was built having the data acquired in this way as the attribute data. The system developed in this way can enable us to spot the positions of road facilities, the target of management with ease, to easily update the data in case of changes in the positions of roads and road facilities, and to manage the positions of roads and road facilities more effectively.

  • PDF