• Title/Summary/Keyword: Pose classification

Search Result 79, Processing Time 0.025 seconds

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface (가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식)

  • Park, Jae-Wan;Oh, Chi-Min;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.11-17
    • /
    • 2010
  • In this paper, we propose HMM-based upper-body gesture. First, to recognize gesture of space, division about pose that is composing gesture once should be put priority. In order to divide poses which using interface, we used two IR cameras established on front side and side. So we can divide and acquire in front side pose and side pose about one pose in each IR camera. We divided the acquired IR pose image using SVM's non-linear RBF kernel function. If we use RBF kernel, we can divide misclassification between non-linear classification poses. Like this, sequences of divided poses is recognized by gesture using HMM's state transition matrix. The recognized gesture can apply to existent application to do mapping to OS Value.

Design of a SIFT based Target Classification Algorithm robust to Geometric Transformation of Target (표적의 기하학적 변환에 강인한 SIFT 기반의 표적 분류 알고리즘 설계)

  • Lee, Hee-Yul;Kim, Jong-Hwan;Kim, Se-Yun;Choi, Byung-Jae;Moon, Sang-Ho;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • This paper proposes a method for classifying targets robust to geometric transformations of targets such as rotation, scale change, translation, and pose change. Targets which have rotation, scale change, and shift is firstly classified based on CM(Confidence Map) which is generated by similarity, scale ratio, and range of orientation for SIFT(Scale-Invariant Feature Transform) feature vectors. On the other hand, DB(DataBase) which is acquired in various angles is used to deal with pose variation of targets. Range of the angle is determined by comparing and analyzing the execution time and performance for sampling intervals. We experiment on various images which is geometrically changed to evaluate performance of proposed target classification method. Experimental results show that the proposed algorithm has a good classification performance.

Study of Posture Evaluation Method in Chest PA Examination based on Artificial Intelligence (인공지능 기반 흉부 후전방향 검사에서 자세 평가 방법에 관한 연구)

  • Ho Seong Hwang;Yong Seok Choi;Dae Won Lee;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Chest PA is the basic examination of radiographic imaging. Moreover, Chest PA's demands are constantly increasing because of the Increase in respiratory diseases. However, it is not meeting the demand due to problems such as a shortage of radiological technologist, sexual shame caused by patient contact, and the spread of infectious diseases. There have been many cases of using artificial intelligence to solve this problem. Therefore, the purpose of this research is to build an artificial intelligence dataset of Chest PA and to find a posture evaluation method. To construct the posture dataset, the posture image is acquired during actual and simulated examination and classified correct and incorrect posture of the patient. And to evaluate the artificial intelligence posture method, a posture estimation algorithm is used to preprocess the dataset and an artificial intelligence classification algorithm is applied. As a result, Chest PA posture dataset is validated with in over 95% accuracy in all artificial intelligence classification and the accuracy is improved through the Top-Down posture estimation algorithm AlphaPose and the classification InceptionV3 algorithm. Based on this, it will be possible to build a non-face-to-face automatic Chest PA examination system using artificial intelligence.

Classification of the Types of Rag Doll to the Development of Doll's Hanbok Patterns (인형의 한복패턴개발을 위한 봉제인형의 유형분류)

  • Kim, Mi-Sook;Soh, Hwang-Oak
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.3
    • /
    • pp.67-77
    • /
    • 2012
  • Hanbok of dolls can be a good medium that can given with value of traditional cultural products, however, it is not easy to see hanbok and its pattern from dolls. Especially for the case of rag doll which is closely related to the life of users, it has enough value as traditional cultural contents, however, there have been not sufficient studies on its pattern development and classification of form of dolls. Therefore, by classifying the body type of dolls by its pose, this study aims to provide a basic data for the development of hanbok pattern. This study looks into the origin and meaning of dolls and the definition and features of rag doll, then, it collected pictures and data rag dolls produced by 29 domestic companies. Through the data collected, the six different types of dolls, 'Sitting Style', 'Standing Style', 'Lying Style', 'Cushion Style', 'Quadruped Sitting Style', 'Quadruped Standing Style', were classified into form. In the future, I hope the result of this study can be used as useful data for toy manufactures and cultural business in relation to development of rag doll and at the same time as a basic data for development of hanbok pattern development of rag dolls as traditional cultural goods.

  • PDF

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.

Marker Classification by Sensor Fusion for Hand Pose Tracking in HMD Environments using MLP (HMD 환경에서 사용자 손의 자세 추정을 위한 MLP 기반 마커 분류)

  • Vu, Luc Cong;Choi, Eun-Seok;You, Bum-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.920-922
    • /
    • 2018
  • This paper describes a method to classify simple circular artificial markers on surfaces of a box on the back of hand to detect the pose of user's hand for VR/AR applications by using a Leap Motion camera and two IMU sensors. One IMU sensor is located in the box and the other IMU sensor is fixed with the camera. Multi-layer Perceptron (MLP) algorithm is adopted to classify artificial markers on each surface tracked by the camera using IMU sensor data. It is experimented successfully in real-time, 70Hz, under PC environments.

Motion Recognition of Workers using Skeleton and LSTM (Skeleton 정보와 LSTM을 이용한 작업자 동작인식)

  • Jeon, Wang Su;Rhee, Sang Yong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.575-582
    • /
    • 2022
  • In the manufacturing environment, research to minimize robot collisions with human beings have been widespread, but in order to interact with robots, it is important to precisely recognize and predict human actions. In this research, after enhancing performance by applying group normalization to the Hourglass model to detect the operator motion, the skeleton was estimated and data were created using this model. And then, three types of operator's movements were recognized using LSTM. As results of the experiment, the accuracy was enhanced by 1% using group normalization, and the recognition accuracy was 99.6%.

A Novel Algorithm for Fault Classification in Transmission Lines using a Combined Adaptive Network-based Fuzzy Inference System (Neuro-fuzzy network을 이용한 고장 검출 및 판별 알고리즘에 관한 연구)

  • Yeo, S.M.;Kim, C.H.;Chai, Y.M.;Choi, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.252-254
    • /
    • 2001
  • Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults(HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.