Chimin Oh;Seonwoo Kim;Jeongmin Park;Injang Jo;Jaein Kim;Chilwoo Lee
Smart Media Journal
/
v.13
no.2
/
pp.68-84
/
2024
This paper describes the development of a system and algorithms for high-quality welfare services by recognizing behavior development indicators (activity, sociability, danger) in children aged 0 to 2 years old using action recognition technology. Action recognition targeted 11 behaviors from lying down in 0-year-olds to jumping in 2-year-olds, using data directly obtained from actual videos provided for research purposes by three nurseries in the Gwangju and Jeonnam regions. A dataset of 1,867 actions from 425 clip videos was built for these 11 behaviors, achieving an average recognition accuracy of 97.4%. Additionally, for real-world application, the Edge Video Analyzer (EVA), a behavior analysis device, was developed and implemented with a region-specific random frame selection-based PoseC3D algorithm, capable of recognizing actions in real-time for up to 30 people in four-channel videos. The developed system was installed in three nurseries, tested by ten childcare teachers over a month, and evaluated through surveys, resulting in a perceived accuracy of 91 points and a service satisfaction score of 94 points.
International conference on construction engineering and project management
/
2024.07a
/
pp.1282-1282
/
2024
Given the widespread use of intelligent surveillance cameras at construction sites, recent studies have introduced vision-based deep learning approaches. These studies have focused on enhancing the performance of vision-based excavator activity recognition to automatically monitor productivity metrics such as activity time and work cycle. However, acquiring a large amount of training data, i.e., videos captured from actual construction sites, is necessary for developing a vision-based excavator activity recognition model. Yet, complexities of dynamic working environments and security concerns at construction sites pose limitations on obtaining such videos from various surveillance camera locations. Consequently, this leads to performance degradation in excavator activity recognition models, reducing the accuracy and efficiency of heavy equipment productivity analysis. To address these limitations, this study aimed to conduct sensitivity analysis of excavator activity recognition performance based on surveillance camera location, utilizing synthetic videos generated from a game-engine-based virtual environment (Unreal Engine). Various scenarios for surveillance camera placement were devised, considering horizontal distance (20m, 30m, and 50m), vertical height (3m, 6m, and 10m), and horizontal angle (0° for front view, 90° for side view, and 180° for backside view). Performance analysis employed a 3D ResNet-18 model with transfer learning, yielding approximately 90.6% accuracy. Main findings revealed that horizontal distance significantly impacted model performance. Overall accuracy decreased with increasing distance (76.8% for 20m, 60.6% for 30m, and 35.3% for 50m). Particularly, videos with a 20m horizontal distance (close distance) exhibited accuracy above 80% in most scenarios. Moreover, accuracy trends in scenarios varied with vertical height and horizontal angle. At 0° (front view), accuracy mostly decreased with increasing height, while accuracy increased at 90° (side view) with increasing height. In addition, limited feature extraction for excavator activity recognition was found at 180° (backside view) due to occlusion of the excavator's bucket and arm. Based on these results, future studies should focus on enhancing the performance of vision-based recognition models by determining optimal surveillance camera locations at construction sites, utilizing deep learning algorithms for video super resolution, and establishing large training datasets using synthetic videos generated from game-engine-based virtual environments.
사용자 친화형 유저 인터페이스 구현을 위해 인간의 손 형상을 실시간으로 인식하는 연구의 중요성이 부각되고 있다. 그러나 인간의 손은 자유도가 크기 때문에 손 형상을 정확히 인식하기란 매우 어렵고 또한 피부색과 유사한 색을 가지는 복잡한 배경에서는 더욱 곤란하다. 본 논문에서는 별도의 센서를 부착하지 않고 카메라를 사용하여 피부색 정보에 의한 손 형상을 분할한 후 손가락 끝 점을 찾는다. 찾은 손가락 끝점을 이용하여 방향을 탐지하는 알고리즘에 대해 기술한다. 이 방법은 템플리트 매칭을 이용하여 손가락 끝 점을 탐색한 후 찾은 손 가락 끝 점과 손목의 중심을 이용하여 전, 후, 좌, 우 방향을 탐지한다. 제안하는 방법을 이용하여 3D가상현실 공간에서의 Navigation에 응용하였으며, 실험결과 전진, 후진 및 좌측, 우측의 방향전환도 매우 좋은 결과를 보였다. 또한 본 논문에서 제안하는 방법은 마우스, 키보드, 조이스틱 등의 조작 없이 전, 후, 좌, 우 방향전환을 사용자가 직관적으로 지시함으로써 보다 자연스러운 인간과 컴퓨터의 상호작용을 제공할 수 있을 것이다.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.2
/
pp.178-183
/
2008
Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.
Korean Journal of Computational Design and Engineering
/
v.14
no.1
/
pp.42-49
/
2009
Virtual manufacturing technology has been applied in actual production sites with the development of virtual reality technology. However, the current virtual manufacturing technology requires experts for application of the system. Furthermore, the sense of reality is diminished as the entire simulation is driven by virtual objects. In contrast, mixed reality can visualize virtual objects and an actual work place simultaneously, and thus the sense of reality of the virtual manufacturing simulation can be improved. This paper introduces a method that applies mixed reality in the manufacturing process, and proposes a method to adapt general safety sign post in the factory instead of a black square marker for visual fiducial recognition.
To ensure the safety of Advanced Driver Assistance Systems (ADAS) or autonomous vehicles, it is important to recognize the vehicle position, and specifically, the increased accuracy of the lateral position of the vehicle is required. In recent years, the quality of GPS signals has improved a lot and the price has decreased significantly, but extreme urban environments such as tunnels still pose a critical challenge. In this study, we proposed stable and precise lane recognition and tracking methods to solve these two issues via fusion of AVM images and vehicle sensor data using an extended Kalman filter. In addition, the vehicle's lateral position recognition and the abnormal state of RTK GPS were determined using this approach. The proposed method was validated via actual vehicle experiments in urban areas reporting multipath and signal disconnections.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.271-272
/
2023
본 논문에서는 게임 개발 플랫폼인 언리얼 엔진 4를 사용하여 동작 인식 기반 복싱 게임 콘텐츠를 개발하였다. Google 사의 미디어파이프(MediaPipe) 오픈소스를 통해 웹캠으로 플레이어의 동작을 인식하며, 미디어파이프의 Pose Landmarks를 기준으로 게임 내의 캐릭터와 매핑하여 캐릭터 동작을 제어하여 복싱 게임에 대한 동작, 자세, 반응속도 등을 연습할 수 있는 콘텐츠를 즐길 수 있다. 제안한 동작 인식 기반 게임은 MediaPipe 기술을 이용하여 자신의 동작으로 게임 캐릭터를 제어하여 더 강한 몰입감을 느낄 수 있고, 비싼 VR 기기들 없이 웹캠만 있으면 어디서든 즐길 수 있고, 다양한 콘텐츠를 싼 가격에 즐길 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.481-483
/
2023
본 논문에서는 어린이통학버스 안전사고 예방을 위한 지능형 탑승객 모니터링 시스템을 개발한다. 지능형 탑승객 모니터링은 통학버스 내 설치된 카메라로 부터 촬영되는 영상을 실시간으로 분석한 후 통학버스 내 발생할 수 있는 다양한 이벤트를 운전자 또는 교사에게 적시에 통보하여 잠재적 안전사고를 지능적으로 회피할 수 있도록 지원하는 시스템을 말한다. 제안한 시스템은 Yolov4, DeepSort, MediaPipe등의 인공지능 관련 SW기술을 활용하여 영상을 분석한 후 싸움과 같은 이상행동, 정차 후 잔류 인원 발생, 하차자와 차량 간의 안전거리 확보 여부를 포함하는 3가지 이벤트를 인식한 후 운전자 또는 교사에게 알림을 제공한다.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.12
/
pp.123-129
/
2014
In accordance with the development of various convergence devices, cameras are being used in many types of the systems such as security system, driver assistance device and so on, and a lot of people are exposed to these system. Therefore the system should be able to recognize the human behavior and support some useful functions with the information that is obtained from detected human behavior. In this paper we use a machine learning approach based on 2D image and propose the human behavior pattern recognition methods. The proposed methods can provide valuable information to support some useful function to user based on the recognized human behavior. First proposed one is "phone call behavior" recognition. If a camera of the black box, which is focused on driver in a car, recognize phone call pose, it can give a warning to driver for safe driving. The second one is "looking ahead" recognition for driving safety where we propose the decision rule and method to decide whether the driver is looking ahead or not. This paper also shows usefulness of proposed recognition methods with some experiment results in real time.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.1
/
pp.219-223
/
2020
To guarantee AI model's prominent recognition rate and recognition precision, obtaining the large number of data is essential. In this paper, we propose transfer learning-based object detection algorithm for maintaining outstanding performance even when the volume of training data is small. Also, we proposed a tranfer learning network combining Resnet-50 and YOLO(You Only Look Once) network. The transfer learning network uses the Leeds Sports Pose dataset to train the network that detects the person who occupies the largest part of each images. Simulation results yield to detection rate as 84% and detection precision as 97%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.