• Title/Summary/Keyword: Portable imaging

Search Result 76, Processing Time 0.03 seconds

A Beamforming-Based Video-Zoom Driven Audio-Zoom Algorithm for Portable Digital Imaging Devices

  • Park, Nam In;Kim, Seon Man;Kim, Hong Kook;Kim, Myeong Bo;Kim, Sang Ryong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • A video-zoom driven audio-zoom algorithm is proposed to provide audio zooming effects according to the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone array in conjunction with a soft masking process that uses the phase differences between microphones. The audio-zoom processed signal is obtained by multiplying the audio gain derived from the video-zoom level by the masked signal. The proposed algorithm is then implemented on a portable digital imaging device with a clock speed of 600 MHz after different levels of optimization, such as algorithmic level, C-code and memory optimization. As a result, the processing time of the proposed audio-zoom algorithm occupies 14.6% or less of the clock speed of the device. The performance evaluation conducted in a semi-anechoic chamber shows that the signals from the front direction can be amplified by approximately 10 dB compared to the other directions.

  • PDF

Development of Portable Gamma Probe and Its Basic Performance Test (이동형 감마프로브 개발과 기본성능 평가)

  • Kim, H.J.;Kwark, C.;Choi, Y.;Yang, M.K.;Bong, J.K.;Lee, S.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.216-219
    • /
    • 1997
  • We are developing a portable multipurpose gamma counting and imaging probe that will be useful for many applications in nuclear medicine including radioimmunoguided surgery in the detection and treatment of malignant tumors. Any diagnostic information provided by CT, MRI, PET, SPECT or gamma camera imaging prior to surgery obviously is very important, but current techniques are limited in many instances. To overcome some of these limitations, the portable multipurpose gamma probe is being developed. The gamma probe consists of NaI(Tl) crystal with 1" dia $\times$ 0.5" thick and singlechannel photomultiplier tube (SC-PMT) for counting, and 3" dia $\times$ 0.375" and multichannel photomultiplier tube (MC-PMT) for imaging, nuclear instrument module (NIM), position circuits, interface, and PC. The energy resolution using Tc-99m was measured as 14% and the spatial resolution using 3mm dia green LED was measured as 2.9mm. These priliminary results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine.

  • PDF

Comparison of Characteristics of Gamma-Ray Imager Based on Coded Aperture by Varying the Thickness of the BGO Scintillator

  • Seoryeong Park;Mark D. Hammig;Manhee Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • Background: The conventional cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)) scintillator-based gamma-ray imager has a bulky detector, which can lead to incorrect positioning of the gammaray source if the shielding against background radiation is not appropriately designed. In addition, portability is important in complex environments such as inside nuclear power plants, yet existing gamma-ray imager based on a tungsten mask tends to be weighty and therefore difficult to handle. Motivated by the need to develop a system that is not sensitive to background radiation and is portable, we changed the material of the scintillator and the coded aperture. Materials and Methods: The existing GAGG(Ce) was replaced with Bi4Ge3O12 (BGO), a scintillator with high gamma-ray detection efficiency but low energy resolution, and replaced the tungsten (W) used in the existing coded aperture with lead (Pb). Each BGO scintillator is pixelated with 144 elements (12 × 12), and each pixel has an area of 4 mm × 4 mm and the scintillator thickness ranges from 5 to 20 mm (5, 10, and 20 mm). A coded aperture consisting of Pb with a thickness of 20 mm was applied to the BGO scintillators of all thicknesses. Results and Discussion: Spectroscopic characterization, imaging performance, and image quality evaluation revealed the 10 mm-thick BGO scintillators enabled the portable gamma-ray imager to deliver optimal performance. Although its performance is slightly inferior to that of existing GAGG(Ce)-based gamma-ray imager, the results confirmed that the manufacturing cost and the system's overall weight can be reduced. Conclusion: Despite the spectral characteristics, imaging system performance, and image quality is slightly lower than that of GAGG(Ce), the results show that BGO scintillators are preferable for gamma-ray imaging systems in terms of cost and ease of deployment, and the proposed design is well worth applying to systems intended for use in areas that do not require high precision.

Improvements of Pulse Doppler Gap Filling Algorithms for Portable Medical Ultrasound Imaging System (휴대용 초음파진단기를 위한 펄스 도플러 갭 필링 알고리즘의 개선)

  • Bae, MooHo;An, Hyung-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.580-589
    • /
    • 2012
  • In this paper, we studied on Doppler gap-filling algorithms suitable for a portable or low-cost medical ultrasound imaging system, and as a result, found out algorithms based on mirroring or autoregressive model. Moreover, controlling the computational demand in the proper range, we improved the performances of these algorithms by solving their problems. Effectiveness of these modified algorithms is verified by computer simulations and experiments which used artificially generated Doppler signals and Doppler data acquired from human body through an actual ultrasound system.

A Study on the Implementation of a Portable Hologram Recording System for Optical Education

  • Cheolyoung, Go;Juyoung, Hong;Kwangpyo, Hong;Eunyeop, Shin;Leehwan, Hwang;Soonchul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.478-486
    • /
    • 2022
  • Holography is a human-friendly technology that can express 3D stereoscopic information without eye fatigue. You can experience the mysterious features of light directly and indirectly, and you can also experience the principles of 3D imaging, which makes it a very good curriculum. As such, although holography is very effective in teaching students optics and 3D imaging technology, it has not yet been systematically established. The reason is the cost burden such as expensive equipment and laboratories, and the lack of easily accessible educational equipment. We implemented a portable holographic recording system to solve this problem. In addition, since silver halides, which use harmful chemicals, are not used in the process of developing the recording medium, and photopolymers are used, it is possible to educate not only the general public but also young students. In order to improve the completeness of the recorded result, the mechanism part, light source, and recording medium part of the production system were newly constructed to complement all the existing problems. The proposed system will make holography easily accessible to many people in a variety of fields, not just education. Through the interesting experience of various features and principles of light and the production of holograms with high satisfaction, we hope to popularize them in various fields such as education.

Application of portable digital radiography for dental investigations of ancient Egyptian mummies during archaeological excavations: Evaluation and discussion of the advantages and limitations of different approaches and projections

  • Seiler, Roger;Eppenberger, Patrick;Ruhli, Frank
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • Purpose: In the age of X-ray computed tomography (CT) and digital volume tomography (DVT), with their outstanding post-processing capabilities, indications for planar radiography for the study of the dentition of ancient Egyptian mummies may easily be overlooked. In this article, the advantages and limitations of different approaches and projections are discussed for planar oral and maxillofacial radiography using portable digital X-ray equipment during archaeological excavations. Furthermore, recommendations are provided regarding projections and sample positioning in this context. Materials and Methods: A total of 55 specimens, including 19 skeletonized mandibles, 14 skeletonized skulls, 18 separate mummified heads, and 4 partially preserved mummies were imaged using portable digital X-ray equipment in the course of archaeological excavations led by the University of Basel in the Valley of the Kings between 2009 and 2012. Images were evaluated by 2 authors with regard to the visibility of diagnostically relevant dental structures using a 4-point grading system(Likert scale). Results: Overall, the visibility of diagnostically relevant dental structures was rated highest by both authors on X-ray images acquired using a dental detector. The tube-shift technique in the lateral projections of mandibular dentition achieved the second-best rating, and lateral projections achieved the third-best rating. Conclusion: Conventional planar digital X-ray imaging, due to its ubiquity, remains an excellent method-and often the only practicable one-for examining the skulls and teeth of ancient Egyptian mummies under field conditions. Radiographic images of excellent diagnostic quality can be obtained, if an appropriate methodology regarding the selected projections and sample placement is followed.

Analysis of the Spatial Dose Rates According to the Type of Radiation Source Used in Multi-bed Hospital Room (다인병실에서 이용되는 방사선원의 종류에 따른 공간선량률 분석)

  • Jang, Dong-Gun;Kim, Junghoon;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.407-413
    • /
    • 2017
  • Medical radiation offers significant benefits in diagnosing and treating patients, but it also generates unnecessary radiation exposure to those nearby. Accordingly, the objective of the present study was to analyze spatial dose rate according to types of radiation source term in multi-bed hospital rooms occupied by patients and general public. MCNPX was used for geometric simulation of multi-bed hospital rooms and radiation source terms, while the radiation source terms were established as whole body bone scan patients and imaging using a portable X-ray generator. The results of simulation on whole body bone scan patients showed $3.46{\mu}Sv/hr$ to another patient position, while experimental results on imaging using a portable X-ray generator showed $1.47{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in chest imaging and $2.97{\times}10^{-8}{\mu}Sv/irradiation$ to another patient position in abdomen imaging. Multi-bed hospital room, unnecessary radiation generated in the surrounding patients, while legal regulations and systematic measures are needed for radiation exposure in multi-bed hospital rooms that are currently lacking in Korea.

Development of Small System for Mobile-Based Visible/NIR Animal Imaging (실험동물용 가시광선/근적외선 생체 이미징 소형 장비의 개발)

  • Eum, Nyeon-Sik;Park, Hee-Joon;Jung, Jin-Yong;Han, Jung-Hyun;Kim, Hyung-Kyung;Jang, Eun-Yoon;Lee, Suck-Jae;Kang, Byoung-Ho;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • In this study, we have developed a mobile-based visible/NIR(Near InfraRed) imaging equipment for the animal testing. This equipment can provide visible, NIR and merged image through the viewer program. Especially, merged image help researcher to understand visual messages at animal in-vivo test. Also, it is available to send real-time images through the smart phone. Researcher can communicate with another researcher who is a long distance away. Also, the equipment was made with portable small size to enable it to commercialize.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Development of Portable Laryngeal Stroboscope (휴대형 후두 스트로보스콥의 개발)

  • Lee, Jae-Woo;Kwon, Soon-Bok;Lee, Byung-Joo;Lee, Jin-Choon;Goh, Eui-Kyung;Chon, Kyong-Myong;Wang, Soo-Geun;Ro, Jung-Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Purpose: Evaluation of vocal cord vibration is very important in cases of voice disorders. There are several equipments for examining the vocal fold vibration such as laryngeal stroboscope, ultra high-speed digital imaging system, and videokymograph. Among these, laryngeal stroboscope is the most popular equipment because of easy to examine the laryngeal pathology. However, current laryngo-stroboscopes are too bulky to move and relatively expensive. The purpose of this research is to develope a portable laryngeal stroboscope of equivalent performance with the current equipments. Methods and Materials: Recently developed high luminescent white LEDs(light emitting diodes) are placed at the head of the endoscope as light sources for the CCD image sensor which is also placed at the head with imaging lens. This arrangement eliminates the bulky light source like expensive halogen or xenon lamps as well as the optical light guiding cables. The LEDs are controlled to flash in phase with the voice frequency of the examinee. The CCD captures these strobo images and converts them into video signals for examinations. Results: There was no functional differences between preexisting stroboscope and the newly developed stroboscope of this study. LED light sources and microprocessor based control circuits of the stroboscope enabled the development of flicker-less, hand-held, portable and battery-operating stroboscope. Conclusion: The developed stroboscope is cost-effective, small-sized, easy to use and very easy desirable to bring and to use in any place.

  • PDF