• Title/Summary/Keyword: Portable Water Storage Tank

Search Result 5, Processing Time 0.018 seconds

A Numerical Study on Hydrodynamic Force Affecting the Vertical Wall of a Portable Water Storage Tank (자유수면의 출렁임이 이동형 소방용수 저장탱크의 수직 벽면에 미치는 동수력에 대한 수치해석)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2017
  • In the present study, the hydrodynamic force acting on the vertical wall of a portable water storage tank is examined. A Dispersion Relation Preserving (DRP) method, proposed by Jang, is applied for simulating lapping waves and their impact on the wall. A meaningful investigation has been observed, which may be applied to the strength design for the portable water storage tank.

A Numerical Investigation of Hydrodynamic Force Acting on the Vertical Wall of a Portable Water Storage Tank using a Linearized Peregrine's Model (선형 Peregrine 모델을 이용한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.76-80
    • /
    • 2018
  • The present study investigates the hydrodynamic force acting on the vertical wall of a portable water storage tank which has reentrant bottom topology. To numerically simulate the lapping waves in the tank, functional iterative method for the linearized Peregrine's model which numerically simulates the propagating waves over the slowly-sloped bottom topology is introduced. The numerical experiment condition is controlled to adjust the position and the height of the water supplying nozzle. Finally, it is observed that the maximum wave height at the vertical wall and the ratio of hydrodynamic force to hydrostatic one are amplified accordingly. Therefore it must be give attention to this bad effect of amplified hydrodynamic force by the supply method of fire water in order to have the structural stability of the portable water storage tank when it was used on the reentrant bottom topography.

Reduction of Hydrodynamic Force Acting on the Vertical Wall of a Portable Water Storage Tank by Convex bottom Design (볼록한 바닥면 설계를 통한 소방용수 저장탱크의 수직 벽면에서의 동수력 저감 연구)

  • So, Soohyun;Park, Jinsoo;Sung, Hong Gun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.69-73
    • /
    • 2018
  • This study examined the reduction effect of a hydrodynamic force acting on the vertical wall of a portable water storage tank with a convex bottom floor. For the numerical simulation, the linearized Peregrine's equation was used to analyze the lapping waves in the tank caused by water falling from a supplying nozzle. The hydrodynamic force could be calculated by measuring the maximum run-up wave height at the vertical wall. The initial conditions of the numerical experiments were set up by controlling the positions and heights of the water supplying nozzle. Finally, the hydrodynamic force acting on the vertical wall can be reduced by the convex bottom design of the portable water storage tank so it can be applied to improve the structural stability.

Investigation of Hydrodynamic Force in a Portable Water Storage Tank of Reentrant Bottom Shape using Nonlinear Peregrine Model (바닥면이 오목한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구: 비선형 Peregrine 모델)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.61-65
    • /
    • 2019
  • In the present study, the hydrodynamic force affected by a lapping wave induced by supplied falling water acting on the vertical wall of a portable water storage tank was analyzed using a nonlinear Peregrine model. The lapping wave's maximum run-up amplitudes and the hydrodynamic forces in the wall of the tank measured by linear and nonlinear Peregrine's models were compared numerically. As a result, it was concluded that the linear model may underestimate the effects on the vertical wall; therefore, it is more appropriate to use a nonlinear Peregrine model. Furthermore, this result can contribute to the stable structural designs of portable water storage tanks.

Development of an Unmanned Conveyor Belt Recovery Skimmer for Floating Marine Debris and High Viscosity Oil (무인 컨베이어 벨트식 부유쓰레기 및 고점도유 회수장비 개발 연구)

  • Han, Sang-goo;Lee, Won-ju;Jang, Se-hyun;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.208-215
    • /
    • 2017
  • When persistent oil, such as crude oil or Bunker C oil, is spilled at sea, viscosity increases through the weathering process. Equipment that can collect this oil when mixed with floating marine debris is very limited. In this study, devices that can be attached to the outside of existing oil skimmers have been applied to the inside of the main body, to develop an unmanned conveyor belt type floating marine debris and high viscosity oil recovery skimmer, which is composed of a conveyor belt, a sweeper with a forced inflow device, and a collection tank equipped with a buoyant body. The resulting skimmer was operated at a speed of 1.2 knots at a distance of 30 m in a sea area test. It was stable when moving laterally in any direction. An oil recovery performance test was conducted using a portable storage tank, and oil was recovered from a minimum of $7.8k{\ell}/h$ to a maximum of $23.3k{\ell}/h$. Moreover, recovery of $7.7k{\ell}/h$ was obtained in a wave water tank test with floating marine debris such as PET bottles and oil mixed. If the equipment developed in this study was used in the field for oil pollution accidents, it could be expected to contribute to improved response capability. We believe our equipment could be used in further studies to improvement the performance of existing portable oil skimmers.