• 제목/요약/키워드: Porous silicon nanowires

검색결과 3건 처리시간 0.014초

다공성 실리콘 나노선의 제작 및 광학적 특성 분석 (Fabrication and Optical Characterization of Porous Silicon Nanowires)

  • 김정길;최석호
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.855-859
    • /
    • 2012
  • Silicon nanowires (SiNWs) were fabricated by a metal-assisted chemical etching of Si and the porous structure on their surfaces was controlled by changing the volume ratio of the etching solution composed of hydrofluoric acid, hydrogen peroxide, and deionized water. The concentration of hydrogen peroxide as the oxidant was varied for controlling the porosity of SiNWs. The optical properties of porous SiNWs were unique and very different from those of single-crystalline Si, as characterized by measuring their photoluminescence and Raman spectra for different porosities.

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • ;;오동훈;;정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF