• Title/Summary/Keyword: Porous mineral

Search Result 85, Processing Time 0.026 seconds

A Review on Past Cases of Self-potential Surveys for Dikes and Embankments Considering Streaming Potential (흐름 전위 특성을 고려한 수리시설물에서의 자연 전위 탐사 사례 고찰)

  • Song, Seo Young;Cho, AHyun;Kang, Peter K.;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.1-17
    • /
    • 2021
  • Self-potential (SP) surveys measure naturally occurring differences in electrical potential in the absence of artificial sources and have been applied to various fields since the first application in mineral explorations. Among various causes of SP occurrences, streaming potential is generated by the flow of groundwater, and makes SP surveys suitable for the exploration of groundwater table fluctuation, fractures, sinkholes and landslide occurrences. Recently, there has been many studies that applied SP surveys to monitor water leakage through dikes and embankments. In this review paper, we first review the characteristics and theoretical backgrounds of streaming potential in saturated or unsaturated porous media to introduce it in the embankment among various application field. After the review of the background theory, we review the past cases of field SP surveys on dikes and embankments and also the characteristics of field streaming potential data in the surveys. Further, by analyzing past studies of qualitative as well as quantitative interpretation of SP survey data, we show the possibility of quantitative interpretation of streaming potential data obtained on dikes and embankments. Consequently, it is hope that this review paper helps researches on SP surveys on dikes and embankments, and provides basis for interpretation methods of the SP data to identify leaked area and further leakage rate (or permeability).

Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting

  • Ozdemir, Saim;Turp, Sinan Mehmet;Oz, Nurtac
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.258-265
    • /
    • 2020
  • Heavy metal removal by using porous mineral adsorbents bears a great potential to decontaminate sludge compost, and natural zeolite (NZ), artificial zeolite (AZ), and expanded perlite (EP) seem to be possible candidates for this purpose. A composting experiment was conducted to compare the efficiency of those adsorbents for removal of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) from sewage sludge compost with no adsorbent amendment. For this purpose, 10 g of NZ and AZ and 5 g of EP was filled in a small bag made from non-biodegradable synthetic textile and was separately mixed in composting piles. The bags were separated from compost samples at the end of the experiment. AZ and NZ exhibited different reduction potentials depending on the type of heavy metal. AZ significantly reduced Cr (43.7%), Mn (35.8%), and Fe (29.9%), while NZ more efficiently reduced Cu (24.5%), Ni (22.2%), Zn (22.1%), and Pb (21.2%). The removal efficiency of EP was smaller than both AZ and NZ. The results of this simultaneous composting and metal removing study suggest that AZ and NZ can efficiently bind metal during composting process.

A Suggested Method for Predicting Permeability of Porous Sandstone Using Porosity and Drying Rate (공극률과 건조율을 이용한 다공질 사암의 투과도 추정방법 제안)

  • Ko, Eunji;Kim, Jinhoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.121-128
    • /
    • 2014
  • As the permeability is an important parameter to characterize the ease with which a porous medium transmits fluids, it is usually obtained by fluid flow experiment using core samples. In order to measure the permeability, however, an experimental apparatus is required and it might take long measurement time, especially for tight samples. In this study, the relationship between permeability and porosity as well as drying rate has been investigated to predict the permeability without a series of measuring experiments. Porosity is measured by drying monitoring method, which measures weight variation continuously while drying surface-dried saturated sample, and drying rate is obtained from weight variation ratio with respect to the water saturation. The total of 6 Berea sandstone samples, which have a permeability range of 70 to 670 mD, were used in this work, and a new and empirical equation which could predict permeability of porous sandstone by using porosity and drying rate were obtained through regression analysis.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Application of Unburned Carbon Produced from Seochun Power Plant (서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안)

  • Lee, Sujeong;Cho, Seho;Lee, Young-Seak;An, Eung-Mo;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application (코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Hydrothermal Mechanism of Na-A Type Zeolite from Natural Siliceous Mudstone (규질 이암으로부터 Na-A형 제올라이트 수열합성 반응기구에 대한 연구)

  • Bae, In-Kook;Jang, Young-Nam;Chae, Soo-Chun;Kim, Byoung-Gon;Ryu, Kyoung-Won;Lee, Sung-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • The mechanism of hydrothermally synthesizing Na-A zeolite from siliceous mudstone at a $Na_2O/SiO_2$ ratio of 0.6, a $SiO_2/Al_2O_3$ 2.0 and a $H_2O/Na_2O$ 119 has been observed by IR, DTA, XRD and SEM. This mudstone is a tertiary periodic sedimentary rock and widely spreads around the Pohang area. In the early hydrothermal synthesis at $80^{\circ}C$ in an autoclave, sodium silicate and sodium aluminate were found to be preferentially reacted to generate Na-A type zeolite. Gibbsite and bayerite were also formed due to the presence of extra aluminum oxide in the feedstock. As reaction time in-creased up to 50 h, residual sodium aluminatewas reacted with siliceous mudstone, causing the Na-A zeolite crystal to grow and the hydroxylsodalite to generate. Therefore, in the $14{\sim}50\;h$ synthetic time, Na-A zeolite and hydroxylsodalite were formed. Also, if reaction time passed over 50 h, a part of the Na-A zeolite was finally redissolved and reacted with hydroxylsodalite to synthesize Na-P zeolite, generating porous surface of Na-A zeolite and disappearing hydroxylsodalite.

Role of Exopolymeric Substances (EPS) in the Stability of the Biofilm of Thiomonas arsenivorans Grown on a Porous Mineral Support

  • Michel, Caroline;Garrido, Francis;Roche, Emilie;Belval, Sylvain Challan;Dictor, Marie-Christine
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither protease nor DNase treatments had any effect on bacterial adhesion. Lectins and calcofluor treatments mainly affected young biofilms. Lipase treatment had a noticeable effect on biofilm stability whatever the biofilm age. Results suggest that it would be an increased resistance of mature biofilms that protects them from external attacks.

Study on Development of Horticultural Media Using Macroporous Calcium-Silicate Mineral (다공성규산칼슘계 화합물을 이용한 원예용 상토개발에 관한 연구)

  • Lee, Jong-Jin;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • The experiment was conducted to investigate the agricultural utility of macro-porous calcium-silicate rnineral(CellCaSi) as topsoil mixture, as well as to estimate as a soil conditioner. The bulk density of CellCaSi which is consisted of various particle sizes ranging from 1mm to 3.35mm was about $0.42g/cm^3$, and its maximum porosity was approximately 81.4%. We also investigate gerrnination rates for Cabbage and Lettuce to obtain the suitable mixing ratios of CellCaSi with topsoil. Among 4 different mixing ratios, the germination rates of ropsoil mixed with 10% of CellCaSi were 94.1% and 64.6% for Cabbage and Lettuce, respectively resulted in the mosr suitable for germination. The growth rates for Cabbage and Lettuce showed thar 10% and 20% of CellCaSi treatments signification influenced the fresh weight. To observe the adsorption capacity of CellCaSi, CellCaSi was treated with a chemical fertlizer(N:P:K=18:18:18). lncreasing the contents of N, P and K, the amounts of adsorption by CellCaSi for these element also increased. The most suitable types nutrient resources for growth condition of Cabbage, and Lettuce were Fer-1 and Fer-0.5.

  • PDF