Porous ceramic membranes consisting of $Ce_{1-x}Y_xO_{2-{\delta}}$ were developed for hydrogen permeation tests. Various amounts (x = 0, 0.05, 0.1, 0.2) of yttrium were doped to ceria to study the effect of yttrium doping on ceria membranes on various properties, including hydrogen permeability. $Ce_{1-x}Y_xO_{2-{\delta}}$ powder was synthesized by the sol-gel method. These membranes were fabricated by pressing and sintering at $1300^{\circ}C$ for 6 h. As the amount of yttrium increased, the grain size of the membrane decreased. Hydrogen permeability was improved as the yttrium content increased. Selective permeability of hydrogen compared to CO is explained by electric conductivity. As the temperature rose, both the hydrogen perm-selectivity and electric conductivity on $Ce_{0.8}Y_{0.2}O_{1.9}$ improved.
본 연구에서는 시판용 99.8% 금속알루미늄을 수산전해액에서 정전류 방식에 의하여 양극산화하여 다공성 알루미나 막을 제조하는 실험을 행하였다. 전기화학 반응은 표면반응으로 양극산화에 앞서 알루미늄판을 열산화, 화학연마 및 전해연마 등의 전처리를 행하였으며, 반응온도, 전기량, 수산전해질 농도 및 전류밀도의 변화에 따라 양극산화를 시행하여 형성된 다공성 알루미나 막의 세공크기와 분포, 세공밀도 및 막와 두께를 조사하였다. 양극산화에 의해 제조된 다공성 알루미나 막의 기하구조는 직선적인 원통형 세공을 가지며, 세공직경이 45~100 nm 범위로 세공분포가 매우 균일하고, 세공밀도가 $10{\sim}30{\times}10^8$개/$cm^2$로 우수한 세라믹막의 특성을 갖는 한외여과막을 제조할 수 있었다.
Basumatary, Ashim Kumar;Kumar, R. Vinoth;Pakshirajan, Kannan;Pugazhenthi, G.
Membrane and Water Treatment
/
제7권6호
/
pp.495-505
/
2016
Mesoporous MCM-41 was deposited on an inexpensive disk shaped ceramic support through hydrothermal technique for ultrafiltration of $Fe^{3+}$ from aqueous solution. The ceramic support was fabricated using uni-axial compaction technique followed by sintering at $950^{\circ}C$. The characteristics of MCM-41 powder as well as the composite membrane were examined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), porosity and pure water permeation test. The XRD result revealed the good crystallinity and well-resolved hexagonally arranged pore geometry of MCM-41. TGA profile of synthesized MCM-41 zeolite displayed the three different stepwise mechanisms for the removal of organic template. The formation of MCM-41 on the porous support was verified by FESEM analysis. The characterization results clearly indicated that the accumulation of MCM-41 by repeated coating on the ceramic disk directs to reduce the porosity and pore size from 47% to 23% and 1.0 to $0.173{\mu}m$, respectively. Moreover, the potential of the fabricated MCM-41 membrane was investigated by ultrafiltration of $Fe^{3+}$ from aqueous stream at various influencing parameters such as applied pressure, initial feed concentration and pH of solution. The maximum rejection 85% was obtained at applied pressure of 276 kPa and the initial feed concentration of 250 ppm at pH 2.
Kim, Yong-Hyun;Han, Young-Hwan;Lee, Hyung-Jik;Lee, Hyung-Bock
한국세라믹학회지
/
제45권4호
/
pp.191-195
/
2008
Highly ordered silver nanowire with a diameter of 10 nm was arrayed by electroless deposition in a porous anodic aluminum oxide(AAO) membrane. The AAO membrane was fabricated electrochemically in an oxalic acid solution via a two-step anodization process, while growth of the silver nanowire was initiated by using electroless deposition at the long-range-ordered nanochannels of the AAO membrane followed by thermal reduction of a silver nitrate aqueous solution by increasing the temperature up to $350^{\circ}C$ for an hour. An additional electro-chemical procedure was applied after the two-step anodization to control the pore size and channel density of AAO, which enabled us to fabricate highly-ordered silver nanowire on a large scale. Electroless deposition of silver nitrate aqueous solution into the AAO membrane and thermal reduction of silver nanowires was performed by increasing the temperature up to $350^{\circ}C$ for 1 h. The morphologies of silver nanowires arrayed in the AAO membrane were investigated using SEM. The chemical composition and crystalline structure were confirmed by XRD and EDX. The electroless-deposited silver nanowires in AAO revealed a well-crystallized self-ordered array with a width of 10 nm.
Porous YSZ ceramics are fabricated using 3 mol% yittria-stabilized zirconia (3YSZ) and NiO with different particlesizes (0.6 and 7 ${\mu}m$). Nickel oxide (NiO) is added to the YSZ powder as a pore former with different amounts(40, 50, and 60 vol%) and at different sintering temperatures (1350 and $1400^{\circ}C$) are applied in order to evaluate the temperature effects on the pore and mechanical properties. Heat treatment is conducted after sintering at $700^{\circ}C$ in $H_2$ for the NiO reduction process; then, Ni is removed using a $HNO_3$ etchant solution. According to the NiO contentand sintering temperatures, 41-67% porous YSZ ceramic is obtained and the flexural strength increases, while the porosity decreases with an increasing sintering temperature. The optimum flexural strength ($136.5{\pm}13.4MPa$) and porosity (47%) for oxygen transport porous YSZ membrane can be obtained with 40 vol% of 7 ${\mu}m$ NiO particle at a sintering temperature of $1350^{\circ}C$.
SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.
Dense oxygen ionic conducting materials can be used for oxygen separation membranes at high temperatures. However, they show relatively low permeation flux because of their large resistances. To reduce resistances and improve the oxygen permeation flux, thin dense yttria-stabilized-zirconia (YSZ)/Pd composite dual-phase membranes were fabricated by a new approach that combines the reservoir method and chemical vapor deposition (CVD). A thin porous YSZ layer was coated on a porous alumina support by dip-coating the YSZ suspension. A continuous Pd phase was formed inside pores of the YSZ layer by the reservoir method. The residual pores of the YSZ/Pd layer were plugged with yttria/zirconia by CVD to ensure the gas tightness of the membranes. The oxygen permeation fluxes through these composite membrane were 2.0$\times$10$^{-8}$ mol/cm$^2$.s and 4.8$\times$10$^{-8}$ mol/cm$^2$.s at 105$0^{\circ}C$ when air and oxygen were used as the permeate gases, respectively. These oxygen permeation values are about 1 order of magnitude higher than those of pure YSZ membranes prepared under similar conditions.
To develop porous glass membranes used for a effective membrane-separation process, porous glasses and glass membranes were prepared from the sodium borosilicate parent glass by the phaseseparation technique and effects of heat-treatment and leaching conditions on their characteristics were investigated. The crack-free glass membranes could be fabricated from the 9.4 Na2-O-30.7 B2O3-59.2 SiO2-0.7 Al2O3(wt%) parent glass by heat-treatment at the lower temperature(550-570$^{\circ}C$) and for longer than 45 hrs for the phase separation, followed by leaching with 3N-HCl+60% ethylene glycol solution at 90$^{\circ}C$ over 25 hrs. Porous glasses prepared in this work showed large specific surface areas(400㎡/g) and narrow pore size distribution with the mean pore radius of 14${\AA}$ enough for the application as reverse osmosis membranes. The salt-rejection efficiency and product-flux of the glass membranes heat-treated at 570$^{\circ}C$ for 80 hrs were found to be 51.8% and 270cc/㎡. hr, respectively. This result suggests that the porous glass membranes fabricated in this study could be applied for the reverse osmosis process.
The HPS(High Porosity Support, 39.3%) and the LPS( Low Porosity Support, 18.7%) were fabricated to investigate the phase transformation and the chance of microstructure with porosity of alumina support. Alumina sol was made using aluminum tri-sec $butoxide(ATSB,\; Al(O-Bu)_3)$, the membrane on porous support with different porosity and the membrane without support were fabricated. The $\theta$-to ${\alpha}-A1_2O_3$ phase transformation in the membranes was investigated using thin film X-ray diffraction (XRD), and the change of microstructure was observed using scanning electron microscopy(SEM). XRD patterns showed that the membrane on LPS and HPS had 10$0^{\circ}C$, 5$0^{\circ}C$ higher $\theta$-to ${\alpha}-A1_2O_3$ transformation temperature compared to the unsupported membrane. A similar effect was also observed in microstructure of the membranes, theoritical temperature difference were 97$^{\circ}C$ and 44$^{\circ}C$ by Crapeyron equation.
$(Ba(Zr_{0.85}Y_{0.15})O_{3-\delta})$ oxide, showing high protonic conductivity at high temperatures and good chemical stability with $CO_2$ are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BZY-Ni layer has to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and may be applicable to the fabrication process of AD integration ceramic layer effectively. XRD, SEM, X-ray mapping measurements were conducted in order to analyze the characteristics of BZY-Ni membrane fabricated by AD process. it is observed that it is homogeneous distribution for BZY-Ni. The result of $H_2$ permeation rate suggests that BZY-Ni composite is higher than BZY.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.