• 제목/요약/키워드: Porous ceramic

검색결과 660건 처리시간 0.03초

다공성 실리콘의 제작조건과 열처리에 따른 Photoluminescence 변화 (Change in Photoluminescence of Porous Silicon with Processing Condition and Heat Treatment)

  • 서영제;최두진;박홍이;이덕희
    • 한국세라믹학회지
    • /
    • 제33권10호
    • /
    • pp.1170-1176
    • /
    • 1996
  • Porous silicon was prepared by anodic reaction. The process was controlled by current density and etching time an the thickness change and the room temperature PL was measured. The thickness of porous silicon was increased with etching time and was decreased after critical time. It was the same as increasing current density. It needed only 15 sec to electropolish the surface of porous silicon above current density 70 mA/cm2. We can understand that increasing etching time leads narrow size of Si column by porous silicon formation mechanism. And the sample with narrow Si column revealed PL blue shift. The specimens were heated in the range of 300-1000$^{\circ}C$ in order to see PL changes. The heat treatment was proceeded in H2 atmosphere vacuum system to avoid oxidation. The PL was disappeared above 600$^{\circ}C$. In high temperature some sintered Si columns were observed in SEM photography. There was no difference of -Hx bonds which was suggested as evidence of hydride compounds luminescence between 500$^{\circ}C$ and 600$^{\circ}C$. Thus it is concluded that quantum confinement is major factor of PL of porous silicon.

  • PDF

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

생체모방기술을 이용한 Boron Nitride /PMMA 복합체 제조 (Biomimetic Preparation of Boron Nitride /PMMA Composite)

  • 남경목;이윤주;김보연;권우택;김수룡;신동근;김영희
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.103-106
    • /
    • 2014
  • Nacre is an organic-inorganic composite material; it is composed of $CaCO_3$ platelet and protein. The microstructure of nacre is a matrix that is similar to bricks and mortar. Technology inspired by nature is called biomimetic technology. In this study, to make high thermal conducting ceramic composite materials using biomimetic technology, a porous green body was prepared with BN platelets. PMMA was infiltrated into the porous green body to make a composite. The microstructure of the composite was observed with FESEM, and the thermal properties were measured. The thermal conductivity of the prepared organic-inorganic composite was 4.19 $W/m{\cdot}K$.

고온 태양열 공기식 흡수기의 충진재 변화에 따른 열전달 및 압력강하 성능 분석 (Honeycomb and Laminated Mesh as Open Volumetric Solar Receiver : Performance of Heat Transfer and Pressure Drop)

  • 조자현;이주한;강경문;서태범
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.760-766
    • /
    • 2008
  • The characteristics of heat transfer and pressure drop of several different porous materials which can be used as inserts inside solar volumetric air receivers were experimentally investigated. Generally, porous materials were inserted into solar volumetric air receivers to increase the thermal performance. In the present work, honeycomb (diameter: 100 mm, thickness: 30 mm), laminated mesh (diameter: 100 mm, thickness: 1 mm) are considered as the inserts for the experiment. The experimental apparatus consists mainly of a cylindrical ceramic duct as a receiver and an electric heater as an energy source. This system is an intake open loop, which used as air of working fluid. The temperatures inside the ceramic tube are measured by thermocouples, which are installed at each layer of the porous materials. The pressure-drop experimental apparatus is fabricated alike the above experimental equipment. An acrylic tube is used like as the ceramic tube, which has the same specifications of the ceramic tube. The pressure drop of porous materials inserted in the acrylic tube is measured between front and rear of those by transmitter. The results show that the laminated mesh surpasses the honeycomb of heat transfer and pressure drop increase as the porous material thickness and Reynolds number.

Thermal Shock Behavior of Porous Nozzles with Various Pore Sizes for Continuous Casting Process

  • Kim, Ju-Young;Yoon, Sang-Hyeon;Kim, Yoon-Ho;Lee, Hee-Soo
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.617-620
    • /
    • 2011
  • Thermal shock behavior of porous ceramic nozzles with various pore sizes for continuous casting process of steel was investigated in terms of physical properties and microstucture. Porous nozzle samples with a composition of $Al_2O_3$-$SiO_2$-$ZrO_2$ were fabricatedby adding various sizes of graphite as the pore forming agent. As the graphite size increased from 45~75 to 150~180 ${\mu}m$, both the resulting pore size and the flexural strength also increased. A thermal shock test was carried out at temperatures (${\Delta}$T) of 600, 700, 800, and 900$^{\circ}C$. Microstructure analysis revealed a small number of cracks on the sample with the largest mean pore size of 22.32 ${\mu}m$. In addition, increasing the pore size led to a smaller decrease in both pressure drop and elastic modulus. In conclusion, controlling the pore size can enhance thermal shock behavior.

수열처리에 의한 폐병유리의 다공질 재료화 (Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment)

  • 임동규;강은태
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.275-281
    • /
    • 2009
  • Porous materials were manufactured by hydrothermal treatment of waste bottle glass without foam agent. Factorial design was applied to analyze data by statistical methods and deal with the important factors for a process. The largest effect for porosity was for temperature of hydrothermal treatment. Amount of water and temperature-water interaction appeared to have little effect. The particle size of raw material was also identified as a major factor by one-way ANOVA and the porosity decreased as the size increased. The sintering temperature was not statistically significant for the porosity but was significant for the pore size. The porous material had compressive strength and thermal conductivity comparing with those of ALC (autoclaved lightweight concrete), although it has higher porosity than for ALC.

Characteristics of Silicon Carbide Nanowires Synthesized on Porous Body by Carbothermal Reduction

  • Kim, Jung-Hun;Choi, Sung-Churl
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.285-289
    • /
    • 2018
  • We synthesized silicon carbide (${\beta}-SiC$) nanowires with nano-scale diameter (30 - 400 nm) and micro-scale length ($50-200{\mu}m$) on a porous body using low-grade silica and carbon black powder by carbothermal reduction at $1300-1600^{\circ}C$. The SiC nanowires were formed by vapor-liquid-solid deposition with self-evaporated Fe catalysts in low-grade silica. We investigated the characteristics of the SiC nanowires, which were grown on a porous body with Ar flowing in a vacuum furnace. Their structural, optical, and electrical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), and selective area electron diffraction (SAED). We obtained high-quality SiC single crystalline nanowire without stacking faults that may have uses in industrial applications.

졸-겔법에 의한 다공질 실리카 유리의 제조에 관한 연구 -Formamide 첨가에 의한 겔의 성질 변화- (The Preparation of Porous Silica Glass by the Sol-Gel Method -Change of Properties of Gel by Addition of Fromamide-)

  • 서정민;신대용;최성일;한상목
    • 한국세라믹학회지
    • /
    • 제30권3호
    • /
    • pp.169-174
    • /
    • 1993
  • The porous silica glass prepared by the sol-gel method from the mixed solution of Si(OCH3)4, H2O, HCl and CH3OH with HCONH2 as a DCCA (Drying Control Chemical Additives). For investigation the characteristics of gels and glasses, we examined gels and glasses using TG-DTA, XRD, IR, SEM and porosimeter. The more content of formamide in the mixed solution increased, the more pore size and porosity of gel increased. In the excess formamide added gel, the properties of pore of gel were not so changed. The porous silica glass was prepared from the dry gel after heat treatment at 75$0^{\circ}C$. Porosity and mean pore size of the porous silica glass was 17~25% and 40~60$\AA$ relatively.

  • PDF

다공성 세라믹스와 다공질층을 포함하는 적층세라믹스의 제조에 관한 연구;II. 불균일 적층소결체 (Fabrication of Porous Ceramics and Multilayered Ceramics Containing Porous Layers; II. Heterogeneous Laminates)

  • 이해원;윤복규;송휴섭
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1323-1329
    • /
    • 1994
  • Tape casting and lamination were used to produce heterogeneous laminates with alternating layers of different porosity and homogeneous laminates with component layers of the same porosity. The pore structure was investigated for heterogeneous laminates, and bend strength was measured for comparison with that of homogeneous laminates. For a reference, strength measurement was made for the porous body fabricated by sintering samples dry-pressed at low pressure with spray-dried granules. Strength increase, in the range 50~120 MPa, was achieved in the presence of the surface dense layer, while extensive delamination, presumably responsible for enhanced fracture toughness, took place through the internal porous layer.

  • PDF

무가압분말충전성형법에 의한 다공성 세라믹스의 제조 및 특성 : I. 알루미나 (The Fabrication and Characteristics of Porous Alumina Ceramics by Pressureless Powder Packing Forming Method : I . Alumina)

  • 박정현;황명익;김동희;최환욱;김용남
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.662-670
    • /
    • 1999
  • Porous alumina was fabricated from pressureless powder packing forming method using powders granulated by spray drying. It was investigated the pore size distribution of fabricated porous alumina. The results of microstructural observation showed that intraganular pore size and intragranular pore size. At 1700$^{\circ}C$ there were no intragranular pores but it showed homogeneous distribution of intergranular pore size. The bending strength and shrinkage increased as porosity decreased. In case of thermal shock resistance sudden decrease of bending strength to $\Delta$T was not shown because intergranular large pore prevented sudden crack propagation.

  • PDF