• Title/Summary/Keyword: Porous Ti

Search Result 313, Processing Time 0.028 seconds

A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC (염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구)

  • Kim, Hee-Je;Kim, Yong-Chul;Choi, Jin-Young;Kim, Ho-Sung;Lee, Dong-Gil;Hong, Ji-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics

  • Kim, Jae;Ha, Jang-Hoon;Lee, Jongman;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • Porous alumina-based ceramics are of special interest due to their outstanding mechanical properties and their thermal and chemical stability. Nevertheless, the high electrical resistance of alumina-based ceramics, due to the generation of static electricity, leads to difficulty in applying a vacuum chuck in the semi-conductor process. Therefore, development of alumina-based ceramics for applications with vacuum chucks aims to have primary properties of low electrical resistance and high air permeability. In this study, we tailored the electrical resistance of porous alumina-based ceramics by adjusting the amount of $MnO_2$ (with $TiO_2$ fixed at an amount of 2 wt%) and by using coarse alumina powder for high air permeability. The characteristics of the specimens were studied using scanning electron microscopy, mercury porosimeter, capillary flow porosimetry, universal testing machine, X-ray diffraction and high-resistance meter.

Preparation of Porous K2Ti6O13 Whisker Preform by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 육티탄산 칼륨 휘스커 프리폼의 제조)

  • Lee, Chang-Hun;Cho, Dong-Choul;Cho, Won-Seung;Lee, Chi-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1197-1202
    • /
    • 2002
  • In order to develope the porous $K_2Ti_6O_13$ whisker preform with good strength, the pore characteristics and compressive strength were investigated as a function of spark plasma sintering temperature. As a result, high porous whisker preform were successfully fabricated by sintering at 900∼950${\circ}C$ for 10 min under a pressure of 40 MPa, heating rate of 50${\circ}C$/min and on-off pulse type of 12:2. The whisker preform prepared under above optimum condition showed relatively high compressive strength of 174∼266 MPa, despite of high porosity ranging from 15% to 37%. This improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between whiskers. The compressive strength of whisker preform, fabricated at sintering temperature less than 900${\circ}C$, showed 80∼100 MPa. This is low strength level less than one half times compared with whisker preform fabricated at 900∼950${\circ}C$. The whisker preform fabricated at 1000${\circ}C$ showed the highest compressive strength of 523 MPa, but resulted in low porosity of ∼5%. Based on above results, it was considered that spark plasma sintering was an effective method for developing high strength and porosity of whisker preform.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Effects of applied voltages on nano-structures of anodized metal oixdes and their electrochromic applications (인가 전압에 따른 양극산화된 금속 산화물의 나노 구조 변화와 전기변색 응용)

  • Kim, Tae-Ho;Lee, Jae-Uk;Kim, Byeong-Seong;Jeon, Hyeong-Jin;Na, Yun-Chae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.115.1-115.1
    • /
    • 2016
  • Electrochemical anodization has been interested due to its useful way for the nano-scale architecture of metal oxides obtained from a metal substrate. By using this method, it is easy to control the morphology of the oxide materials by controlling electrochemical conditions. Among oxide materials obtained from the transition metals such as Ti, V, W, etc., in this paper, the morphological study of anodized $TiO_2$ was employed at various voltage conditions in fluoric based electrolyte, and the effects of applied voltage (sweep rate and retention time) on the tube morphologies were investigated. Furthermore, by using anodization of tungsten substrate (W), we fabricated the porous structure of $WO_3$ and provided merits of tailored structure for the hybridization of inorganic and organic materials as electrochromic (EC) applications. The hybrid porous $WO_3$ shows multi-chromic properties during the EC reactions at specific voltage conditions. From these results, the anodization process with tailoring nano-structure is one of the promising methods for EC applications.

  • PDF

Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.345-350
    • /
    • 2010
  • For the present paper, we prepared MgO/MWCNT/$TiO_2$ photocatalyst by using multi-walled carbon nanotubes (MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate $(Mg(CH_2COO)_2\cdot4H_2O)$ and titanium n-butoxide $(Ti\{OC(CH_3)_3\}_4)$ as magnesium and titanium precursors. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decomposition of methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that the MgO/MWCNT/$TiO_2$ photocatalyst have cubic MgO structure and anatase $TiO_2$ structure. The porous structure and the $TiO_2$ agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can be also observed in MgO/MWCNT/$TiO_2$ photocatalyst from EDX results. The results of photodegradation of MB solution under UV light show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also, the MgO/MWCNT/$TiO_2$ photocatalyst has the best photocatalytic activity among these samples. It can be considered that the MgO/MWCNT/$TiO_2$ photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photoinduced electrons $(e^-)$, and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of $TiO_2$.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Analysis of the Sol-Gel Coating Process for the Preparation of Supported TiO2 Composite Membranes ($TiO_2$ 복합 분리막의 제조를 위한 졸-겔 코팅공정 분석)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.403-409
    • /
    • 1992
  • The titania membrane thickness coated on the porous alumina support by the sol-gel method was analyzed using the slipcasting model. The thickness of calcined membrane layers increased linearly from 1.3 to 3.8 ${\mu}{\textrm}{m}$ with the square root of the dipping time (4~40 min). Growth rates of the thickness of wet gels and calcined layers were well described quantitatively by the slipcasting model. Through the regression of experimental data using model equations, the permeability and the pressure drop across wet gels, and the thickness and their growth rate constants of wet gels and calcined layers could be determined. It was also known that the gellation concentration of the TiO2 sol used in this work and the porosity of wet gel layes were 25 mol/ι and 0.53, respectively.

  • PDF

Synthesis of porous $TiO_2$ using organic-templating and application for dye-sensitized solar cells (유기물 템플레이트를 이용한 다공성 티타늄 산화물의 합성 및 염료감응 태양전지로의 적용)

  • Lee, Jin-Kyu;Oh, Jae-Kyung;Kim, Hyun-Su;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.147-149
    • /
    • 2009
  • 가수분해 및 응축반응을 사용하여 다공성의 TiO2입자를 합성하였다. 다공성 구조의 열적 영향을 살펴보기위해 annealing 시간을 조절하였고 태양전지에 적용하기 위해 paste로 만들었다. 그 구조적 특성을TEM(Transmission electron microscopy)과 XRD(X-ray diffraction) 통하여 분석하였고 광 전기화학적 활성을 측정해 보았다. 결과적으로 3시간 열처리한 시료의 효율이 최적화된 조건이였음을 확인하였다.

  • PDF

Effect of Aggregates on the Sintering Behavior of $BaTiO_3$ (응집입자가 $BaTiO_3$의 소결거동에 미치는 영향)

  • 김진호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.926-934
    • /
    • 1991
  • The effect of aggregates on the forming and sintering behaviors of BaTiO3 was studied. Aggregates and deaggregates of fine crystallite were obtained by thermal decomposition of oxalate coprecipitates and subsequently crushing them with a press, respectively. Large voids formed by packing of aggregates were not easily eliminated despite the successive destruction of aggregates with increasing forming pressure. As a result, compacts of aggregates showed inhomogeneity with larger mid-pore size and broader pore size distribution with respect to those of deaggregates. This inhomogeneity caused differential shrinkage and consequental internal stress, which retarded densification. The differential sintering increased the size of mid-pores in the initial stage, and formed duplex structure composed of dense region with abnormally grown grains and porous region with fine grains. The driving force of this abnormal grain growth shown in the specimens of aggregates was attributed to the minimization of the elastic strain energy due to internal stress.

  • PDF