• Title/Summary/Keyword: Porous Scaffold

Search Result 86, Processing Time 0.022 seconds

Fabrication and Biomechanical Characteristics of Composite Ceramic Bone Scaffolds for Bone Tissue Engineering (골 생체조직공학을 위한 복합 세라믹 골 지지체의 제조와 생체역학적 특성)

  • Kim E. S.;Chung J. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.457-466
    • /
    • 2004
  • Novel porous composite ceramic bone scaffolds composed of biodegradable PHBV(polyhydroxybutyrate-co-hydroxyvalerate) and TA(toothapatite) have been fabricated for bone tissue engineering by a modified solvent casting and particulate leach-ing method with salt-contained heat compression technique. The results of this study suggest that the PHBV-TA composite scaffold, especially the scaffold containing 30 weight$\%$ of TA may be a good candidate far bone tissue engineering of non-load bearing area in oral and maxillofacial region.

Fabrication of Tailor-Made 3D PCL Scaffold Using a Bio-Plotting Process (바이오-플로팅시스템을 통한 Tailor-Made 3D PCL Scaffold 제작)

  • Son, Joon-Gon;Kim, Geun-Hyung;Park, Su-A;Kim, Wan-Doo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Biomedical scaffold for tissue regeneration was fabricated by one of rapid prototyping processes, bioplotting system, with a biodegradable and biocompatible poly($\varepsilon$-carprolactone)(PCL). Through dynamic mechanical test, it was observed that the PCL scaffold manufactured by the bioplotting process has the superior mechanical properties compared to the conventional scaffold fabricated by a salt-leaching process, and the plotted scaffold could be employed as a potential scaffold to regenerating hard and soft tissue. The plotted scaffold was consisted of porous structures. which were interconnected with each pore to help cells be easily adhered and proliferated in the wall of pore tunnels, and metabolic nutrients can be transported within the matrix. By using the plotting system, we could adjust the pore size, porosity, strand pitch, and, strand diameter of PCL scaffolds, which were important parameters to control mechanical properties of the scaffolds, and consequently we could determine that the mechanically controlled scaffolds could be used as a matching scaffold for any required mechanical properties of the target organ. The fabricated 3D PCL scaffold showed enough possibility as a 3D biomedical scaffold, which was cell-cultured with chondrocytes.

Preparation and Biocompatibility of Composite Bone Scaffolds Using Gnotobiotic Pig Bones (무균돼지뼈를 이용한 복합 골지지체의 제조와 생체적합성 평가)

  • Im, Ae-Lee;Chung, Jong-Hoon;Lim, Ki-Taek;Choung, Pill-Hoon;Hong, Ji-Hyang
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.50-56
    • /
    • 2007
  • Highly porous composite bioceramic bone scaffolds were developed using sintered gnotobiotic pig bones. These scaffolds consisted of poly-D,L-lactic acid (P(D,L)LA) and bioceramic materials of pig bone powder. The bone scaffolds were able to promote biocompatibility and possess interconnected pores that would support cell adhesion and proliferation adequately. The composite scaffolds were tested with dental pulp stem cells for cytotoxicity test. Cells seeded on the composite scaffolds were readily attached, well proliferated, as confirmed by cytotoxicity test, and cell adhesion assessment. The composite bone scaffold had no toxicity in cytotoxicity test on the extract of 0.013 g scaffold to 2 ml culture medium. The cells on the composite bone scaffold proliferated better than cells on the P(D,L)LA scaffolds.

Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone (SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생)

  • Kim Soon Hee;Yun Sun Jung;Jang Ji Wook;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

In-Situ Formation of Porous HAp Using Polymer Foam Process (폴리머 발포법을 이용한 다공성 HAp 지지체의 제조 및 특성 평가)

  • Kim, Zin-Kook;Ji, Sang-Yong;Ji, Hyung-Bin;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.289-293
    • /
    • 2008
  • Porous HAp with three-dimensional network channels was prepared in a polymer foam process using a in-situ formation. HAp/polyol with various HAp solid contents was formed with an addition of isocyanate. Under all conditions, the obtained porous HAp had pore sizes ranging $50\;{\mu}m$ to $250\;{\mu}m$. The influence of the HAp content on the physical and mechanical properties of porous HAp scaffolds was investigated. As the solid content increased, the porosity of the porous HAp decreased from 79.3% to 77.9%. On the other hand, the compressive strength of the porous HAp increased from 0.7 MPa to 3.7 MPa. With a HAp solid content of 15 g, the obtained porous HAp had physical properties that were more suitable for scaffolds compared to other conditions.

Porous gelatin-based membrane as supports for impregnation of cells (세포함유용 지지체로서 다공성 젤라틴계 막)

  • 이영무;홍성란
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2001
  • 본 논문은 인공 진피와 조직공학용 scaffold로 이용하기 위해 다공성 membrane로서 gelatin-based sponge의 효율성을 연구하였다. 불용성의 다공성 membrane은 1-ethyl-(3-3dimethylaminopropyl)carbodiimide(EDC)로 가교하여 제조하였다. Fourier-transformed infrared (FT-IR) spectroscopy, scanning electron microscopy(SEM) 그리고 Instron analysis로 다공성 membrane의 특성을 조사하였다. 다공성 membrane은 용적당 큰 표면적을 제공하는 micro porous한 구조를 가지고 있다. Gelatin/hyaluronic acid (HA) membrane의 공경크기는 40~200$\mu\textrm{m}$이다. HA의 첨가는 다공성 membrane의 기계적 강도와 세포부착능력에 영향을 미쳤다. Gelatin/HA 다공성 membrane의 압축강도는 collagen과 비슷하며, 세포배양과 인공진피 transplantation에 있어서의 충분한 기계적 강도를 가지고 있다. Fibroblasts를 함유한 진피기질을 제조하기 위해 직경 8mm의 다공성 membran에 4$\times$10(sup)5cells/membrane의 세포밀도로 fibroblast를 배양하였다. GH91 porous membrane에서의 fibroblast 부착성은 GH55 porous membrane에서보다 우수하였다. 삼차원 구조의 gelatin/HA membrane matrix에서의 fibroblast의 배양은 생체내 조건과 유사한 생리적 환경을 제공하였다.

  • PDF

Fabrication and Characterization of Porous PLLA Scaffolds with Gentamicin Sulfate Release System (겐타마이신 설페이트를 서방화한 다공성 PLLA 지지체의 제조와 물성평가)

  • 최명규;강길선;이일우;이종문;이해방
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.318-326
    • /
    • 2001
  • PLLA scaffold loaded with gentamicin sulfate (GS) was prepared by emulsion freeze-drying method for the prevention of infection and the improvement of wettability. i.e., the cell- and tissue-compatibility. GS-loaded PLLA scaffolds were characterized by scanning electron microscopy (SEM), mercury porosimetry and blue dye intrusion, and the GS release pattern was analyzed by high performance liquid chromatography (HPLC). GS-loaded PLLA scaffolds with porosity above 50%, medium pore size ranging from 30 to 57 ${\mu}{\textrm}{m}$ (with larger pore diameters greater than 150 ${\mu}{\textrm}{m}$), and specific pore area in the range of 35 to 75($m^2$ /g )were manufactured by varying processing parameter as GS concentration. It was observed that GS-loaded PLLA scaffolds were highly porous with good interconnections between pores for allowing cell adhesion and growth. These scaffolds may be applicable for scaffold as structures that facilitate either tissue regeneration or repair during reconstructive operations.

  • PDF

Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold (PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가)

  • Kim, Jung-Ho;Lee, Ok Joo;Sheikh, Faheem A.;Ju, Hyung Woo;Moon, Bo Mi;Park, Hyun Jung;Park, Chan Hum
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.150-155
    • /
    • 2014
  • Polycaprolactone (PCL) is a synthetic biodegradable polymer with excellent mechanical properties. $TiO_2$ (titanium dioxide) has a hydrophilic, high density and excellent biocompatibility. In this work, we produced three-dimensional porous scaffolds with PCL and $TiO_2$ nanoparticles using a salt-leaching method. Physical properties of the scaffolds were analyzed by FE-SEM, FTIR, TGA and compressive strength. Interestingly, the addition of $TiO_2$ nanoparticles decreased the water absorption and swelling ratio of the porous scaffolds. However, the compressive strength was increased by $TiO_2$. CCK-8 assay, which is generally used for the analysis of cell growth, shows that $TiO_2$ nanoparticles have no cytotoxicity. Taken together, we suggest that the PLC/$TiO_2$-scaffold can be used for biomedical applications.

Polycaprolactone Nanofiber Mats Fabricated Using an Electrospinning Process Supplemented with a Chemical Blowing Agent (전기방사공정과 발포제를 이용한 Polycaprolactone 나노섬유 지지체 제작)

  • Kim, Geun-Hyung;Yoon, Hyeon;Lee, Haeng-Nam;Park, Gil-Moon
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.458-464
    • /
    • 2008
  • A successful scaffold should have a highly porous structure and good mechanical stability. High porosity and appropriate pore size provide structural matrix for initial cell attachment and proliferation enabling the exchange of nutrients between the scaffold and environment. In this paper the highly porous scaffold of poly(${\varepsilon}$-caprolactone) electrospun nanofibers could be manufactured with an auxiliary electrode and chemical blowing agent (BA) under several processing conditions, such as the concentration of PCL solution, weight percent of a chemical blowing agent, and decomposition time of a chemical blowing agent. To attain stable electrospinnability and blown nanofiber mats having high microporosity and large pore, a processing condition, 8wt% of PCL solution and 0.5wt% of a chemical blowing agent under $100^{\circ}C$ and decomposition time of $2{\sim}3\;s$, was used. The growth characteristic of human dermal fibroblasts cells cultured in the mats showed the good adhesion and proliferation on the blown mat compared to a normal electrospun mat.