• Title/Summary/Keyword: Porous Powder

Search Result 510, Processing Time 0.028 seconds

Tensile Strength Variation of Binary Tablets Produced by Planetary Ball Milling (유성볼밀링으로 제조한 2성분 정제의 인장강도 변화)

  • Sim, Chol-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Planetary ball mill was used to decrease and control the particle size of excipients. The effects of the weight of sample and the revolution number of mill, and grinding time on the particle size of the ground sample were analyzed by response surface methodology. The optimum conditions for the milling of microcrystalline cellulose were 38.82 g of the weight of sample and 259 rpm of the revolution number of mill, and 45 minutes of grinding time. The predicted value of the particle size at the these conditions was $19.02{\mu}m$, of which the experimental value at the similar conditions was $18.68{\mu}m$. The tensile strength of tablets of single-component powders, such as microcrystalline cellulose, hydroxypropylmethyl cellulose and starch, binary mixtures and ground binary mixtures of these powder were measured at various relative densities. It was found that the logarithm of the tensile strength of the tablets was proportional to the relative density. A simple model, based upon Ryshkewitch-Duckworth equation that was originally proposed for porous materials, has been developed in order to predict the relationship between the tensile strength and relative density of ground binary tablets based on the properties of the constituent single-component powders. The validity of the model has been verified with experimental results for ground binary mixtures. It has demonstrated that this model can well predict the tensile strength of ground binary mixtures based upon the properties of single-component powders, such as true density, and the compositions. When the tensile strength of the mixture of microcrystalline cellulose hydroxypropylmethyl cellulose (90:10) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 45.3 to 5.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$. When the tensile strength of the mixture of microcrystalline cellulose starch (80:20) and the ground mixture of them were compared, the tensile strength of the ground mixture decreased widely from 31.0 to 11.6% compared to the mixture in case the relative density of tablets was in the range of $0.7{\sim}0.9$.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Powder of Pine Wood (Pinus densiflora Sieb. et Zucc.) (II) - FT-IR, Raman - (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(II) - FT-IR, Raman -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.52-57
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of porous wood charcoal are studied by FT-IR and Raman spectroscopies. IR studies showed that cellulose and hemicellulose are mostly decomposed in the precarbonization stage at $500^{\circ}C$, while the decomposition reaction of relatively more stable lignin lasts up to $700^{\circ}C$. Above $900^{\circ}C$, the peak at $1575cm^{-1}$ disappears and a new peak at $1630cm^{-1}$, which seems to be related to the new carbon deposit phase, is evolved. The results of Raman studies, which show the red-shift of D-band and the increase in the relative intensity of D- to G-band, indicate that the size of the crystalline becomes smaller with increasing the carbonization temperature.

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination (화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성)

  • Chee, Sang-Soo;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.631-637
    • /
    • 2013
  • Synthesis of sub-micron $2SnO{\cdot}(H_2O)$ powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the $2SnO{\cdot}(H_2O)$ powders. In the synthesis of the $2SnO{\cdot}(H_2O)$ powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized $2SnO{\cdot}(H_2O)$ powders. A holding time of 1 hr in air at $500^{\circ}C$ sufficiently transformed the $2SnO{\cdot}(H_2O)$ into $SnO_2$ phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at $700^{\circ}C$. Hence, heating for 1 h at $500^{\circ}C$ made a porous $SnO_2$ film containing residual PVP, whereas dense $SnO_2$ films with no significant amount of PVP formed after heating for 1 h at $700^{\circ}C$.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

High Performance Size Exclusion Chromatographic Analysis of Polymerization Products in Used Frying Oil (High Performance Size Exclusion Chromatography 를 이용한 튀김유의 중합체 분석)

  • Kim, In-Whan;Kim, Chul-Jin;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.33-37
    • /
    • 1990
  • A simple and rapid method, based on separation of a flying oil into monomeric, dimeric and oligomeric triglyceride by means of high performance size exclusion chromatography on Ultrastyragel column (500 A), is proposed for evaluation of the quality of used frying oil. The relative area of the monomeric triglyceride was decreased with frying time increase, however, the decrease rate was significantly reduced by treatment of a composited powder (porous rhyorite/citric acid 40/56/4). This measurement showed good linear relationship with change in polar component measurement. There were no significant differences between the slopes of regression lines in both treated and non-treated frying oil system for relationship between monomeric triglyceride and polar component. By this method, it was found that a frying oil habe to be discarded if the content monomeric triglyceride decreased to 71%, which was corresponed to 27% polar component.

  • PDF

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Effect of Conductive Additives in La0.8Sr0.2MnO3 Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution (알칼리용액에서 La0.8Sr0.2MnO3 페롭스카이트 촉매의 산소환원 및 발생반응에서 도전재의 영향)

  • SHIM, JOONGPYO;LOPEZ, KAREEN J.;YANG, JIN-HYUN;SUN, HO-JUNG;PARK, GYUNGSE;EOM, SEUNGWOOK;LEE, HONG-KI
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 2016
  • The effects of conductive additives in a $La_{0.8}Sr_{0.2}MnO_3$ perovskite bifunctional electrode for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated in an alkaline solution. Highly porous carbon black (CB) and Ni powder were added to the bifunctional electrodes as conductive additives. The surface morphologies of electrodes containing CB and Ni were observed by scanning electron microscopy (SEM). The current densities for both ORR and OER were changed by the addition of CB. The conductive additive changed physical properties of bifunctional electrodes such as the sheet conductance, gas permeability and contact angle. It was observed that the air permeability of electrode was most effective to enhance the currents for ORR and OER.