• Title/Summary/Keyword: Porous Powder

Search Result 506, Processing Time 0.024 seconds

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment (다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가)

  • An, Sang-Hyun;Kim, Seung-Eon;Kim, Kyo-Han;Yun, Hui-Suk;Hyun, Yong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Preparation and properties of porous (Ca,Mg)0.15Zr0.7O1.7 ceramics (다공성 (Ca,Mg)0.15Zr0.7O1.7 세라믹스의 제조 및 특성)

  • Kim, Bok-Hee;Kim, Sang-Hee;Choi, Eun-Sil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • [ $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ]ceramics was investigated for the application to SOFC ceramic supporter with high porosity and mechanical strength. $ZrO_2$ powder was prepared by combustion method with glycine using the solution of $ZrO(NO_3)_2{\cdot}2H_2O$ dissolved into deionized water and calcination at $800^{\circ}C$ Porous $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics was prepared by sintering the mixture of prepared $ZrO_2$ powder, dolomite and carbon black at $1200{\sim}1400^{\circ}C$ for 1 h. The open porosity ofthe $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics sintered at $1300^{\circ}C$ was over 30 % and increased linearly with the amount of carbon black. The crystal structure of $(Ca,Mg)_{0.15}Zr_{0.7}O_{1.7}$ ceramics consisted of single cubic phase. The open pore of this ceramics was connected continuously and distributed well on the whole. This ceramics sintered at $1300^{\circ}C$ showed the porosity from 32 to 55 % and mechanical strength from 90 MPa to 30 MPa with increasing the content of added carbon black.

STUDY OF POLYMETHYL METHACRYLATE BONE CEMENT CONTAINING BOVINE-DERIVED DEFATTING DEMINERALIZED BONE POWDER (탈지방탈회우골분말과 Polymethyl Methacrylate(PMMA) Bone Cement 혼합제에 관한 연구)

  • Kim, Woon-Kyu;Kim, Su-Gwan;Cho, Se-In;Ko, Young-Moo;Yoon, Jung-Hoon;Ahn, Jong-Mo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.491-497
    • /
    • 2001
  • Polymethylmethacrylate(PMMA) is currently commonly used material for the reconstruction of bone defects and fixation of joint prosthetics following congenital and acquired causes. Although PMMA has widespread use, it does not possess the ideal mechanical characteristics with osteoconductivity and osteoinductivity required. In order to overcome these problem, addition of bovine bone drived defatting demineralized bone(BDB) powders to a PMMA bone cement was done for improvement of physical property and bone forming characteristics of composite. In order to investigate the influence of BDB reinforcement on the PMMA, we measured physical property of compressive, tensile, flexural strength, and scanning electron microscopic examinations. The results were obtained as follows: 1. The PMMA forms a solid cellular matrix with open cells about $100{\mu}m$ in variable size and incorporating BDB. BDB aggregates inside the cells form a porous network that is accessible from the outer surface. 2. The physical properties were compressive strength of mean $22.74{\pm}1.69MPa$, tensile strength of mean $22.74{\pm}1.69MPa$, flexural strength of mean $77.53{\pm}6.93MPa$. Scanning electron microscopic examinations were revealed that there was DBD particles form a highly porous agglomerates. BDB can be added PMMA in the form of dried powders, the composites are applicable as bone substitutes. BDB and PMMA mixture is shown to produce a class of composites that due to their microstructure and improved mechanical properties may be suitable for application as bone subsitutes. The mechanical and material properties of the BDB-PMMA bone substitute composites are competitive with those properties of a porous ceramic matrix of other hydroxyapatite and with those of natural bones.

  • PDF

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

Preparation of Nanocrystalline ZnO Ultrafine Powder Using Ultrasonic Spraying Combustion Method (초음파분무 연소법에 의한 나노결정 ZnO 초미분체 제조)

  • Kim, Kwang-Su;Hwang, Du-Sun;Ku, Suk-Kyeon;Lee, Kang;Jeon, Chi-Jung;Lee, Eun-Gu;Kim, Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.784-790
    • /
    • 2002
  • For mass product of nanocrystalline ZnO ultrafine powders, self-sustaining combustion process(SCP) and ultrasonic spray combustion method(USCM) were applied at the same time. Ultrasonic spray gun was attached on top of the vertical type furnace. The droplet was sprayed into reaction zone of the furnace to form SCP which produces spherical shape with soft agglomerate crystalline ZnO particles. To characterize formed particles, fuel and oxidizing agent for SCP were used glycine and zinc nitrate or zinc hydroxide. Respectively, with changing combustion temperature and mixture ratio of oxidizing agent and fuel, the best ultrasonic spray conditions were obtained. To observe ultrasonic spray effect, two types of powder synthesis processes were compared. One was directly sprayed into furnace from the precursor solution (Type A), the other directly was heated on the hot plate without using spray gun (Type B). Powder obtained by type A was porous sponge shape with heavy agglomeration, but powder obtained using type B was finer primary particle size, spherical shape with weak agglomeration and bigger value of specific surface area. 9/ This can be due to much lower reaction temperature of type B at ignition time than type A. Synthesized nanocrystalline ZnO powders at the best ultrasonic spray conditions have primary particle size in range 20~30nm and specific surface area is about 20m$^2$/g.

The Auto-adhesion of Fingerprint Powders (지문 분말의 자착성(auto-adhesion)에 관한 연구)

  • Kim, Chae-Won;Cho, Hyeong-Woo;Lee, Sang-A;Song, Dong-Ha;Yu, Je-Seol
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2017
  • Powder method is one of the most commonly used techniques for developing latent fingerprints on non-porous surfaces. While fingerprint powders become more diverse, there is no standard for the number of stroking a brush. For this reason, crime scene investigators need to stroke a brush as they try to figure out how much latent fingerprints are developed. Also, results vary from individual to individual. According to the combination of material and manufacturing, there are various results that powder particles hold together. It is called auto-adhesion which means the interaction between powder particles. This study showed auto-adhesion of 13 kinds of fingerprint powders expanding the number of stroking time. Consequently, some fingerprint powders had strong auto-adhesive property and others had weak auto-adhesion. Furthermore, the others did not change.

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM (다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구)

  • Lee, Kyung-Hun;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Effect of Reaction Conditions on the Particle Properties for Synthesis of Stabilized Zirconia by Modified Oxalate Method

  • Park, Hyun-wook;Lee, Young Jin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Hae Jin;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.529-534
    • /
    • 2016
  • Nanocrystalline powder of zirconia stabilized with 8 mol% yttria (YSZ) has been synthesized through oxalate process using $ZrOCl_2{\cdot}8H_2O$ and $Y(NO_3)_3{\cdot}6H_2O$ as starting materials. Understanding of the characteristic changes of YSZ powder as a function of processing conditions is crucial in developing dense and porous microstructures required for fuel cell applications. In this research, microstructure change, surface area, particle shape and particle size were measured as a function of different processing conditions such as calcination temperature, stirring speed and concentration of starting materials. The resultant crystallite sizes were calculated by XRD-LB (X-Ray Diffraction Line-Broadening) method, BET method, and morphology of the crystal was observed in TEM and FE-SEM. The TEM examination showed that the powder synthesized with 0.7 M of YSZ concentration had a spherical morphology with sizes ranging from 20 to 40 nm. However, the powder was gradually aggregated above 1.0 M of YSZ concentration with the aggregation being intensified as the YSZ concentration was increased.