• 제목/요약/키워드: Porous Ni

검색결과 218건 처리시간 0.029초

Improvement in Cycle Characteristics using PVP Based Direct Carbon Coating During High-Rate Charge and Discharge of Li[Ni0.93Co0.07]O2 Nanofibers: Application for Lithium Secondary Batteries

  • Hae In Kim;Hyun Ju Jang;Thuy Thi Bich Tran;Jong-Tae Son;Eui Jeong Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.139-144
    • /
    • 2023
  • In this study, carbon-coated porous nanofibers were prepared via electrospinning and the performance of Li[Ni0.93Co0.07]O2 (NC) synthesized by electrospinning (E-NC) and co-precipitation (C-NC) was compared. E-NC had a discharge capacity of 206 mAh g-1 at 0.1C (17 mA/g), which is 10% higher than that of C-NC (189.2 mAh g-1). E-NC shows a high-rate performance of 118.32 mAh g-1 (61.7%) at 5C (850 mA/g), which is 50% higher than that of C-NC (78.22 mAh g-1 = 45.7%). Charge transfer of the carbon-coated porous nanofiber E-NC decreased by 35% compared to C-NC after 20 cycles as observed using electrochemical impedance spectroscopy. The results of this study show that the nanofiber structure with carbon coating shortens the Li-ion diffusion path, improves electrical conductivity, resulting in excellent rate performance.

다공질 금속의 제조와 응용 (Production Processes of Porous Metals and Their Applications)

  • 심재동;변지영
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.

HVOF 용사된 $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr 용사층의 산화 거동 (Oxidation Behavior of the HVOF-sprayed $\textrm{Cr}_{3}\textrm{C}_{2}$-NiCr Coating Layer)

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제8권8호
    • /
    • pp.757-765
    • /
    • 1998
  • 수소를 연료로 하여 HVOF 용사된 크롬카바이드 용사층의 산화거동을 이해하기 위해 용사분말의 제조방법이 서로 다른 두 종류의 용사용 분말을 ($\textrm{Cr}_{3}\textrm{C}_{2}$-20wt%NiCr로 구성된 크래드 분말과 $\textrm{Cr}_{3}\textrm{C}_{2}$-7wt%NiCr로 구성된 혼합분말)이용하여 F/O비를 3.2, 3.0, 2.8 로 변화시켜 용사한 후, $1000^{\circ}C$ 까지 등온 산화실험 후, 산화특성을 고찰하여 크롬카바이드 용사층의 F/O비에 의존하는 산화거동을 비교 검토하였다. 그 결과 NiCr이 20wt% 크래드된 분말로 용사된 용사층과 NiCr이 7wt% 혼합된 분말로 용사된 용사층은 전혀 다른 산화거동을 보였다. 혼합분말의 경우에 $1000^{\circ}C$에서 50시간 등온산화실험 후, F/O=3.2의 조건인 경우에는 산화물이 표면 요철을 따라 비교적 균일하게 성장한 반면 F/O=3.0과 F/O=2.8의 경우에는 용사층 표면이 다공성의 산화물이 형성되었으며, 또한 Ni, Cr으로 이루어진 복합산화물인 oxide cluster로 성장하였다. 반면에 크래드 분말로 용사된 용사층의표면 산화물 층은 다공성을 변화되지 않았다. 이러한 용사분말의 제조방법에 따라 산화거동이 차이를 보이는 것은 용사 중에 발생하는 카바이드분해와 밀접한 관계가 있는 것으로 생각되며 또한 일반적으로 알려진 크롬카바이드 소결체 보다 산화율이 높았다. 이러한 결과로 볼 때, 환원성의 수소의 양에 따른 용사층의산화거동에 대해서도 연구가 필요할 것으로 생각된다.

  • PDF

Carbon Dioxide Reforming of Methane Over Mesoporous $Ni/SiO_2$ Catalyst

  • Kim, Dae Han;Sim, Jong Ki;Seo, Hyun Ook;Jeong, Myung-Geun;Kim, Young Dok;Lim, Dong Chan;Kim, Sang Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.166-166
    • /
    • 2013
  • Mesoporous $SiO_2$-supported Ni catalysts (Ni/$SiO_2$ and Ni/$TiO_2$/$SiO_2$) were fabricated by atomic layer deposition (ALD), and their catalytic activity and stability were investigated in carbon dioxide reforming of methane (CRM) reaction at $800^{\circ}C$ The Ni/$SiO_2$ catalysts showed high stability as a result of confinement of Ni particles with a mean size of ~10 nm within the pores of $SiO_2$ support. Besides, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the Ni nanoparticles were partially buried inside the $SiO_2$ support. The strong interaction between Ni and the $SiO_2$ support could also be advantageous for long-term stability of the catalyst. In case of the Ni/$TiO_2$/$SiO_2$ catalyst, it was found that the catalytic activity of 10 nm-sized Ni nanoparticles was not much influenced by $TiO_2$ addition.

  • PDF

산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성 (Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides)

  • 이창우;윤의식;이재성
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

In-situ 환원/소결법을 이용한 다공성 니켈 멤브레인 가스필터의 제조 및 평가 (Fabrication and Characterization of Porous Nickel Membrane for High Precision Gas Filter by In-situ Reduction/Sintering Process)

  • 김남훈;송한복;최성철;좌용호
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.262-267
    • /
    • 2009
  • Disk type porous nickel membrane was fabricated by in-situ reduction/sintering process using compacted NiO/PMMA (PMMA; Polymethyl methacrylate) mixture at $800^{\circ}C$ in hydrogen atmosphere. The porosity (49$\sim$58%) of these membrane was investigated as an amount of PMMA additive. The thermal decomposition and reduction behavior of NiO/PMMA were analyzed by TG/DTA in hydrogen atmosphere and the activation energy for the hydrogen reduction of NiO and thermal degradation of PMMA was calculated as 61.1 kJ/mol, evaluated by Kissinger method. Finally, the filtering performance and pressure drop were measured by particle counting system.

리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성 (Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries)

  • 신윤정;이원열;김태윤;문승근;김은미;정상문
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.184-192
    • /
    • 2022
  • 수열합성을 통해 합성한 다공성 NiO는 리튬 폴리설파이드의 용출을 억제하기 위하여 리튬-황 전지의 전극에 사용되었다. 리튬-황 전지의 전극은 경제적이고 간단한 진공 여과 방법을 이용하여 집전체와 바인더가 없는 프리스탠딩 플렉서블 전극으로 제작되었다. 다공성 NiO를 첨가한 S/CNT/NiO 전극은 순수 S/CNT 전극에 비해 125 mA h g-1 증가한 877 mA h g-1 (0.2 C)의 초기 방전용량과 200 사이클 후 84% (S/CNT: 66%)의 우수한 용량 유지율을 나타내었다. 이는 방전 과정 중에서 NiO와 리튬 폴리설파이드의 강한 화학적 결합에 의하여 리튬 폴리설파이드의 전해질로 용출되는 것을 억제하여 나타난 결과이다. 또한 S/CNT/NiO 전극의 유연성 테스트를 위해 1.6 × 4 cm2의 파우치셀로 제작하여 폴딩한 상태와 하지 않은 상태에서 모두 620 mA h g-1의 안정적인 사이클 특성을 나타내었다.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 1. 합금 wire의 직경 및 인가 전압의 영향 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.105-111
    • /
    • 2011
  • This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가 (Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating)

  • 박언우;문환;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권1호
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.