• Title/Summary/Keyword: Porous Ni

Search Result 218, Processing Time 0.025 seconds

Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR (저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향)

  • Jungsoo Kim;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • In order to increase the usability of H2-SCR, the NOx removal characteristics with catalyst powder of PtNi/CeO2-W-TiO2 using Ce as a co-catalyst was synthesized and coated on a porous metal structure (PMS) were evaluated. Catalyst powder of PtNi/CeO2-W-TiO2(PtNi nanoparticles onto W-TiO2, with the incorporation of ceria (CeO2) as a co-catalysts) was synthesized and coated onto a porous metal structure (PMS) to produce a Selective Catalytic Reduction (SCR) catalyst. H2-SCR with CeO2 as a co-catalyst exhibited higher NOx removal efficiency compared to H2-SCR without CeO2. Particularly, at a 10wt% CeO2 loading ratio, the NOx removal efficiency was highest at 90℃. As the amount of catalyst coating on PMS increased, the NOx removal efficiency was improved below 90℃, but it was decreased above 120℃. When the space velocity was changed from 4,000 h-1 to 20,000 h-1, the NOx removal efficiency improved at temperatures above 120℃. It was expected that the use of the catalyst could be reduced by applying the PMS with excellent specific surface area as a support.

A Study on the Improvement of Strength in NiO-YSZ Porous Anode Material for Solid Oxide Fuel Cell (SOFC용 다공성 NiO-YSZ 음극소재의 강도향상에 관한 연구)

  • 이기성;서두원;유지행;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.241-248
    • /
    • 2003
  • We controlled the amount of Y$_2$O$_3$additives, 8 mol% and 10 mol%, and the type of carbon pore former, activated carbon and carbon black, to improve the strength of porous NiO-YSZ anode materials for solid oxide fuel ceil. The 3-point flexural strength, porosity and electrical conductivity were evaluated. As a result, the strength of anode materials with the addition of carbon black was markedly improved. The strength of NiO-10 mol%YSZ sintered at relatively higher temperature was higher than that of NiO-8 mol%YSZ materials. The electrical conductivity of NiO-10 mol%YSZ with carbon black was evaluated as much as 10$^2$∼10$^3$S/cm at 700$^{\circ}C$∼1000$^{\circ}C$ in reducing atmosphere.

Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering (전기방전소결을 이용한 Ti-Ni-Zr 준 결정상의 상변화 연구와 Ti, W 다공체 제작)

  • Cho, J.Y.;Song, G.A.;Lee, M.H.;Lee, H.S.;Lee, W.H.;Kim, K.B.
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.

Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene

  • Lee, Ji-Sun;Halligudi, Shiva B.;Jang, Nak-Han;Hwang, Dong-Won;Chang, Jong-San;Hwang, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1489-1495
    • /
    • 2010
  • A porous coordination solid of nickel(II) dihydroxyterephthalate has been synthesized by the microwave-assisted (MW) method. The synthesized nickel(II) dihyroxylterephthalate was designated by the general formula of [$Ni_2$(dhtp) $(H_2O)_2]{\cdot}8H_2O$ (where, dhtp = 2,5-dihydroxyterephthalate, denoted by Ni-DHTP). The effect of microwave-irradiation temperature and time of irradiation on the porosity and morphological changes in the solids have also been investigated. The catalytic performance of Ni-DHTP synthesized by MW method has been studied in the oxidation of cyclohexene with aqueous $H_2O_2$, which gave cyclohexene oxide as the primary product and 2-cyclohexene-1-ol as a major product.

A Study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane (팔라듐 합금 수소 분리막의 전처리에 관한 연구)

  • Park, Dong-Gun;Kim, Hyung-Ju;Kim, Hyo Jin;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.248-256
    • /
    • 2012
  • A Pd-based hydrogen membranes for hydrogen purification and separation need high hydrogen perm-selectivity. The surface roughness of the support is important to coat the pinholes free and thin-film membrane over it. Also, The pinholes drastically decreased the hydrogen perm-selectivity of the Pd-based composite membrane. In order to remove the pinholes, we introduced various surface pre-treatment such as alumina powder packing, nickel electro-plating and micro-polishing pre-treatment. Especially, the micro-polishing pretreatment was very effective in roughness leveling off the surface of the porous nickel support, and it almost completely plugged the pores. Fine Ni particles filled surface pinholes with could form open structure at the interface of Pd alloy coating and Ni support by their diffusion to the membrane and resintering. In this study, a $4{\mu}m$ surface pore-free Pd-Cu-Ni ternary alloy membrane on a porous nickel substrate was successfully prepared by micro-polishing, high temperature sputtering and Cu-reflow process. And $H_2$ permeation and $N_2$ leak tests showed that the Pd-Cu-Ni ternary alloy hydrogen membrane achieved both high permeability of $13.2ml{\cdot}cm^{-2}{\cdot}min^{-1}{\cdot}atm^{-1}$ permation flux and infinite selectivity.

Synthesis and Conductivity Properties of $LaNiO_3$ Ceramic Conductors ($LaNiO_3$전도성 세라믹의 합성과 도전특성)

  • Cho, Jung-Ho;Cho, Joo-Hun;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.406-409
    • /
    • 2001
  • The conductivity properties and synthesis of $LaNiO_{3}$ ceramics from $La_{1+\delta}NiO_{3}(\delta=-0.06,0,0.06)$ were investigated. A single perovskite phase was realized at $800^{\circ}C$. $La_{2}NiO_{4}$ and other unexpected oxide were observed at $1000^{\circ}C$. The Microstructure was showed clearly that it is a low density porous material. $LaNiO_3$ ceramic showed a metallic conductivity. The conductivity of La rich samples had a higher value than the La poor samples.

  • PDF

Synthesis and Conductivity Properties of LaNiO$_3$ Ceramic Conductors (LaNiO$_3$전도성 세라믹의 합성과 도전특성)

  • 조정호;조주현;김강언;정수태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.406-409
    • /
    • 2001
  • The conductivity properties and synthesis of LaNiO$_3$ ceramics from La$\sub$1+$\delta$/NiO$_3$($\delta$=--0.06, 0, 0.06) were investigated. A single perovskite phase was realized at 800$^{\circ}C$. La$_2$NiO$_4$ and other unexpected oxide were observed at 1000$^{\circ}C$. The Microstructure was showed clearly that it is a low density porous material. LaNiO$_3$ ceramic showed a metallic conductivity. The conductivity of La rich samples had a higher value than the La poor samples.

  • PDF

High Temperature Oxidation Behavior of Ni-W Coatings Electrodeposited on Steel (강기판 위에 코팅된 Ni-W의 고온산화거동)

  • 고재황;권식철;장도연;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.430-436
    • /
    • 2003
  • The nanoocrystalline Ni-l5W(at.%) coating electrodeposited on the high carbon steel was oxidized at 700 and $800^{\circ}C$ in air, and the resultant oxidation properties were investigated using XRD, EPMA, TGA and TEM. The oxidation resistance of the coating was not so good that most of the coating was oxidized after oxidation at $800^{\circ}C$ for 5 hrs. The oxidation led to the formation of the outer, thin NiO oxide scale and the inner, porous, rather thick ($NiWO_4$+NiO) mixed layer containing a bit of $WO_2$. During oxidation, substrate elements such as Fe and Cr diffused outwardly toward the coating, according to the concentration gradient.