DOI QR코드

DOI QR Code

A Study on the Improvement of Strength in NiO-YSZ Porous Anode Material for Solid Oxide Fuel Cell

SOFC용 다공성 NiO-YSZ 음극소재의 강도향상에 관한 연구

  • 이기성 (한국에너지기술연구원 에너지재료연구센터) ;
  • 서두원 (한국에너지기술연구원 에너지재료연구센터) ;
  • 유지행 (한국에너지기술연구원 에너지재료연구센터) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터)
  • Published : 2003.03.01

Abstract

We controlled the amount of Y$_2$O$_3$additives, 8 mol% and 10 mol%, and the type of carbon pore former, activated carbon and carbon black, to improve the strength of porous NiO-YSZ anode materials for solid oxide fuel ceil. The 3-point flexural strength, porosity and electrical conductivity were evaluated. As a result, the strength of anode materials with the addition of carbon black was markedly improved. The strength of NiO-10 mol%YSZ sintered at relatively higher temperature was higher than that of NiO-8 mol%YSZ materials. The electrical conductivity of NiO-10 mol%YSZ with carbon black was evaluated as much as 10$^2$∼10$^3$S/cm at 700$^{\circ}C$∼1000$^{\circ}C$ in reducing atmosphere.

고체산화물 연료전지용 음극소재로 사용되는 다공성 NiO-YSZ 소재의 강도를 향상시키기 위하여 $Y_2$O$_3$첨가제의 양 및 기공전구체로 첨가되는 탄소첨가제의 종류를 변화시켰으며, 이에 따른 기계적 강도와 기공율, 전기전도도를 측정하였다. $Y_2$O$_3$첨가제의 양은 8 mol%와 10 mo1%로 각각 변화시켰으며, 기공전구체는 활성탄과 카본블랙의 영향을 고찰하였다. 그 결과 카본블랙을 기공전구체로 사용하였을 경우 활성탄을 사용한 경우에 비해 기계적 강도가 크게 향상되었으며, 상대적으로 고온의 소결온도에서 제조된 10 mo1%의 $Y_2$O$_3$가 첨가된 NiO-YSZ 음극소재가, 8 mol%가 첨가된 소재에 비하여 상대적으로 우수한 강도를 나타내었다. 10 mo1%의 $Y_2$O$_3$와 카본블랙이 첨가된 음극소재는 전기전도도 값에 있어서도 $700^{\circ}C$~100$0^{\circ}C$의 온도범위에서 $10^2$~$10^3$S/cm의 양호한 값을 나타내는 것으로 평가되었다.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, 'Materials for Fuel Cell Technology,' Nature, 414 [15] 345-52 (2001)
  2. O. Yamamoto, 'Solid Oxide Fuel Cells : Fundamental Aspects and Prospects,' Electrochimica Acta, 45 2423-35 (2000) https://doi.org/10.1016/S0013-4686(00)00330-3
  3. E. I. Tiffee, A. Weber, and D. Herbstritt, 'Materials and Technologies for SOFC-components,' J. Eur. Ceram. Soc., 21 1805-11 (2001) https://doi.org/10.1016/S0955-2219(01)00120-0
  4. K. Choy, W. Bai, S. Charojrochkul, and B. C. H. Steele, 'The Development of Intermediate-temperature Solid Oxide Fuel Cell for the Next Millenium,' J. Power Sources, 71 361-69 (1998) https://doi.org/10.1016/S0378-7753(97)02728-6
  5. Y. S. Yoo and H. C. Lim, 'Performance of Anode-supported Solid Oxide Fuel Cell with LaUsSio isMnOg Cathode Mod-ified by Sol-gel Coating Technique,' J. Power Sources, 4678 1-7 (2002)
  6. C. Milliken, S. Guruswamy, and A. Khandkar, 'Evaluation of Ceria Electrolytes in Solid Oxide Fuel Cells Electric Power Generation,' J. Electrochem. Soc., 146 872-82 (1999) https://doi.org/10.1149/1.1391695
  7. S. M. Choi, K. T. Lee, K. Y. Kim, S. Kim, and H. L. Lee, 'Oxygen Ion Conductivity and Power Density of $LaGaO_3$ Alternative Electrolytes for Ceramic Fuel Cell,' J. Kor. Ceram. Soc., 36 [9] 909-914 (1999)
  8. J. H. Lee, G. D. Kim, Y. B. Sohn, H. W. Lee, S. W. Kim, H. S. Song, and G. H. Kim, 'Power Generating Charac-teristics and Long Term Stability of the Anode Supporting Type SOFC,' J. Kor. Ceram. Soc., 37 [9] 847-55 (2000)
  9. R. H. Song, K. S. Song, J. H. Kim, D. R. Shin, and H. Yokokawa, 'Development of Anode-supported Tubular Solid Oxide Fuel Cell,' Proceedings of the 5th European Solid Oxide FueI Cell Forum, Switzerland, Vol. 1, p. 861-67 (2002)
  10. G. Digiuseppe and J. R. Selman, 'Anode-supported Planar Solid Oxide Fuel-cells by Plasma-Enhanced Metalorganic Chemical-Vapor-Deposition (PE-MOCVD) and Electro-static Spray Deposition (ESD)-Fabrication of Dense Thin-layers of Yttria-stabilized Zirconia by PE-MOCVD,' J. Mater. Res., 16 [10] 2983-91 (2001) https://doi.org/10.1557/JMR.2001.0409
  11. S. J. L. Kang, Sinterine: Densification, Grain Growth and Microstructure, Science & Culture Co., Korea, Ch. 2. (1997)
  12. J. W. Heo, D. S. Lee, J. H. Lee, J. D. Kim, J. S. Kim, H. W. Lee, and J. H. Moon, 'Effect of the Pore Structure on the Anode Property of SOFC,' J. Kor. Ceram. Soc., 39 [1] 86-91 (2002) https://doi.org/10.4191/KCERS.2002.39.1.086
  13. R. W. Rice, 'Comparison of Stress Concentration Versus Minimum Solid Area Based Mechanical Property-porosity Relation,' J. Mater. Sci., 28 2187 (1993) https://doi.org/10.1007/BF00367582
  14. S. Kirkpatrick, 'Percolation and Conduction,' Rev. Mod. Phys., 45 [4] 574-88 (1973) https://doi.org/10.1103/RevModPhys.45.574
  15. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic FueI Cells, EIsevier, 1995
  16. S. T. Aruna, M. Muthuraman, and K. C. Patil, 'Synthesis and Properties of Ni-YSZ Cermet : Anode Materials for Solid Oxide Fuel Cells,' Solid State Ionics, Ill 45-51 (1998) https://doi.org/10.1016/0167-2738(81)90052-7
  17. U. Anselmi-Tamburini, G. Chiodelli, M. Arimondi, F. Maglia, G. Spinolo, and Z. A. Munir, 'Electrical Properties of Ni/YSZ Cermets Obtained through Combustion Syn-thesis,' Solid State Ionics, 110 35-43 (1998) https://doi.org/10.1016/S0167-2738(98)00115-5
  18. D. Skarmoutsos, A. Tsoga, A. Naoumidis, and P. Nikol-opoulos, 'Smol% $TiO_2-doped$ Ni-YSZ Anode Cermets for Solid Oxide Fuel Cells,' Solid State lonics, 135 439-44 (2000) https://doi.org/10.1016/S0167-2738(00)00392-1
  19. I. T. Gibson, G. P. Dransfield, and J. T. S. Irvine, 'Influence of Yttria Concentration upon Electrical Properties and Sus-ceptibility to Ageing of Yttria-stabilized Zircomas,' J. Eur. Ceram. Soc., 18 661-67 (1998) https://doi.org/10.1016/S0955-2219(97)00173-8

Cited by

  1. Mechanical Behavior of Glass/Porous Alumina by Contact Loading vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.399
  2. Effect of Porous Substrate on the Strength of Asymmetric Structure vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.417
  3. Cracking of densely coated layer adhesively bonded to porous substrates under Hertzian stress vol.42, pp.21, 2007, https://doi.org/10.1007/s10853-007-2063-2