• Title/Summary/Keyword: Porous Materials

Search Result 1,716, Processing Time 0.042 seconds

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

NH3 sensing properties of porous CuBr films prepared by spin-coating (스핀 코팅법으로 제작한 다공성 CuBr 필름의 암모니아 감응특성)

  • Kim, Sang-Kwon;Yu, Byeong-Hun;Yoon, Ji-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.451-455
    • /
    • 2021
  • Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.

The Formation of Hybridized Porous Structure of Al Alloy by Alkali Surface Modification (알칼리 표면개질을 통한 다공성 알루미늄 합금의 하이브리드 기공구조 형성)

  • Seo, Young-Ik;Kim, Young-Moon;Lee, Young-Jung;Kim, Dae-Gun;Lee, Kyu-Hwan;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.

Electrochemical Characterization of Anodic Tin Oxides with Nano-Porous Structure (나노 구조를 가지는 다공성 주석 산화물의 전기화학적 특성)

  • Lee, Jae-Wook;Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.

Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge (폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직)

  • Gain Asit Kumar;Lee Hee-Jung;Jang Hee-Dong;Lee Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.177-182
    • /
    • 2005
  • Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.

Effect of Surface Modification of the Porous Stainless Steel Support on Hydrogen Perm-selectivity of the Pd-Ag Alloy Hydrogen Separation Membranes (다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화)

  • Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.286-300
    • /
    • 2016
  • Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

Fabrication of Porous Tungsten by Freeze Casting and Vacuum Drying of WO3/Tert-butyl Alcohol Slurry (WO3/Tert-butyl alcohol 슬러리의 동결주조와 진공분위기 건조를 이용한 텅스텐 다공체 제조)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2022
  • The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at -25℃ and dried under vacuum at -25 and -10℃. The dried bodies are hydrogen-reduced at 800℃ and sintered at 1000℃. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.