DOI QR코드

DOI QR Code

NH3 sensing properties of porous CuBr films prepared by spin-coating

스핀 코팅법으로 제작한 다공성 CuBr 필름의 암모니아 감응특성

  • Kim, Sang-Kwon (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity) ;
  • Yu, Byeong-Hun (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity) ;
  • Yoon, Ji-Wook (Department of Electronic and Information Materials Engineering, Jeonbuk National Unversity)
  • 김상권 (전북대학교 전자정보재료공학과) ;
  • 유병훈 (전북대학교 전자정보재료공학과) ;
  • 윤지욱 (전북대학교 전자정보재료공학과)
  • Received : 2021.11.12
  • Accepted : 2021.11.26
  • Published : 2021.11.30

Abstract

Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(FTIS 2021382C10-2123-0101)'의 지원에 의하여 이루어진 것입니다.

References

  1. D. Kwak, Y. Lei, and R. Maric, "Ammonia gas sensor: A comprehensive review", Talanta, Vol. 204, pp. 713-730, 2019. https://doi.org/10.1016/j.talanta.2019.06.034
  2. D. M. Nerkar, S. V. Panse, S. P. Patil, and S. E. Jaware, "Development of room temperature operating NH3 gas sensor based on free standing PPy-PVA composite films", Int. J. Sci. Res., Vol. 5, No. 6, pp. 2582-2588, 2016.
  3. D. Wu, Q. Peng, S. Wu, G. Wang, L. Deng, H. Tai, L. Wang, Y. Yang, L. Dong, Y. Zhao, J. Zhao, D. Sun, and L. Lin, "A simple graphene NH3 gas sensor via laser direct writing", Sensors, Vol. 18, No. 12, pp. 4405(1)-4405(10), 2018. https://doi.org/10.3390/s18124405
  4. U. S., Agency for Toxic Substances and Disease Registry, Toxicological profile for ammonia, Atlanta, 2004.
  5. L. Ampollini, E. F. Katz, S. Bourne, Y. Tian, A. Novoselac, A. H. Goldstein, G. Lucic, M. S. Waring, and P. F. DeCarlo, "Observations and contributions of real-time indoor ammonia concentrations during HOMEChem", Environ. Sci. Technol., Vol. 53, No. 15, pp. 8591-8598, 2019. https://doi.org/10.1021/acs.est.9b02157
  6. D. S. Gavaskar, P. Nagaraju, Y. Vijayakumar, P. S. Reddy, and M. V. R. Reddy, "Low-cost ultra-sensitive SnO2-based ammonia sensor synthesized by hydrothermal method", J. Asian Ceram. Soc., Vol. 8, No. 3, pp. 605-614, 2020. https://doi.org/10.1080/21870764.2020.1769820
  7. P. Guo and H. Pan, "Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor", Sens. Actuators B-Chem., Vol. 114, pp. 762-767, 2006. https://doi.org/10.1016/j.snb.2005.07.040
  8. C. Castillo, G. Cabello, B. Chornik, Y. Huentupil, and G. E. Buono-Core, "Characterization of photochemically grown Pd loaded WO3 thin films and its evaluation as ammonia gas sensor", J. Alloys Compd., Vol. 825, pp. 154166(1)-154166(7), 2020.
  9. H. J. Kharat, K. P. Kakde, P. A. Savale, K. Datta, P. Ghosh, and M. D. Shirsat, "Synthesis of polypyrrole films for the development of ammonia sensor", Polym. Adv. Technol., Vol. 18, pp. 397-402, 2007. https://doi.org/10.1002/pat.903
  10. L. Kumar, I. Rawal, A. Kaur, and S. Annapoorni, "Flexible room temperature ammonia sensor based on polyaniline", Sens. Actuators B-Chem., Vol. 240, pp. 408-416, 2017. https://doi.org/10.1016/j.snb.2016.08.173
  11. R. Ghosh, A. Midya, S. Santra, S. K. Ray, and P. K. Guha, "Chemically reduced graphene oxide for ammonia detection at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, No. 15, pp. 7599-7603, 2013. https://doi.org/10.1021/am4019109
  12. J. W. Han, B. Kim, J. Li, and M. Meyyappan, "A carbon nanotube based ammonia sensor on cellulose paper", RSC Adv., Vol. 4, pp. 549-553, 2014. https://doi.org/10.1039/C3RA46347H
  13. Z. Guo, N. Liao, M. Zhang, and W. Xue, "Theoretical approach to evaluate graphene/PANI composite as highly selective ammonia sensor", Appl. Surf. Sci., Vol. 453, pp. 336-340, 2018. https://doi.org/10.1016/j.apsusc.2018.05.108
  14. T. Poyet, P. Knauth, and P. L. Llewellyn, "Sorption of ammonia gas on the solid ion conductor Cu(I)Br", Phys. Chem. Chem. Phys., Vol. 4, pp. 802-805, 2002. https://doi.org/10.1039/b110063g
  15. A. T. Guntner, M. Wied, N. J. Pineau, and S. E. Pratsinis, "Rapid and selective NH3 sensing by porous CuBr", Adv. Sci., Vol. 7, pp. 1903390(1)-1903390(7), 2020. https://doi.org/10.1002/advs.201903390
  16. M. Bendahan, P. Lauque, C. Lambert-Mauriat, H. Carchano, and J. L. Seguin, "Sputtered thin films of CuBr for ammonia microsensors: morphology, composition and ageing", Sens. Actuators B-Chem., Vol. 84, pp. 6-11, 2002. https://doi.org/10.1016/S0925-4005(02)00004-7
  17. H. Y. Li, C. S. Lee, D. H. Kim, and J. H. Lee, "Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection", ACS Appl. Mater. Interfaces, Vol. 10, pp. 27858-27867, 2018. https://doi.org/10.1021/acsami.8b09169
  18. H. Zhu, A. Liu, and Y. Y. Noh, "Transparent inorganic copper bromide(CuBr) p-channel transistors synthesized from solution at room temperature", IEEE Electron Device Lett., Vol. 40, No. 5, pp. 769-772, 2019. https://doi.org/10.1109/led.2019.2904737