• Title/Summary/Keyword: Porous Insulation

Search Result 67, Processing Time 0.026 seconds

A Study on the Sound Insulation Characteristics of Honeycomb Panels for Offshore Plants (해양플랜트용 허니컴 패널의 차음 특성 연구)

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.948-955
    • /
    • 2017
  • Currently, porous materials (e.g., mineral wool) are the core materials used in offshore plant panels, but in spite of their superb acoustic performance, these items must be replaced for environmental reasons. A honeycomb structure is widely used throughout the industry because of its high strength-to-weight ratio. However, research in terms of noise and vibration is minimal. An acoustic study should be conducted by taking advantage of honeycomb structures to replace porous materials. In this study, a simulation was performed assuming that a honeycomb panel is a superposition of symmetric mode and antisymmetric mode. Reliability was verified by comparing a simulation results based on a theory with a experimental results, and the possibility of the panel as a core material was evaluated by studying the sound insulation characteristics of a honeycomb. As the panel thickness increased, the coincidence frequency shifted to low frequency. As the angle between horizontal line and oblique wall and cell-size decreases, the sound insulation performance is improved. And as the cell-wall thickness increased, the sound insulation performance improved.

Defect detection of vacuum insulation panel using image analysis based on corner feature detection (코너 특정점 기반의 영상분석을 활용한 진공단열재 결함 검출)

  • Kim, Beom-Soo;Yang, Jeonghyeon;Kim, Yeonwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.398-402
    • /
    • 2022
  • Vacuum Insulation Panel (VIP) is an high energy efficient insulation system that facilitate slim but high insulation performance, based on based on a porous core material evacuated and encapsulated in a multi-barrier envelope. Although VIP has been on the market for decades now, it wasn't until recently that efforts have been initiated to propose a standard on aging testing. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time. It is hard to visually determine at an early stage. Recently, a method of analyzing the damage on the a material surface by applying image processing technology has been widely used. These techniques provide fast and accurate data with a non-destructive way. In this study, the surface VIP images were analyzed using the Harris corner detection algorithm. As a result, 171,333 corner points in the normal packaging were detected, whereas 32,895 of the defective packaging, which were less than the normal packaging. were detected. These results are considered to provide meaningful information for the determination of VIP condition.

A Study on the characteristics of degradation sensor for insulation oil (절연유(絶緣油) 열화(劣化)센서 특성(特性) 연구(硏究))

  • Chon, Y.K.;Sun, J.H.;Kang, D.S.;Joo, B.S.;Yoon, J.Y.;Chung, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1371-1374
    • /
    • 1995
  • It is well known that the degradation of transformer oil conseqently lead to the failure of transformer. This paper discussed the characteristics of the degradation sensor checking transformer oil condition in live line. The degadation sensor is composed of base ring, electrodes and porous ceramic, passed through the transformer oil and checks the transformer oil condition through sensor's leakage current. So it is important to minimize the leakage current of base ring and connection parts. To investigate the leakage current of base ring and connection parts the characteristics of V-T-I and DC 2 KV and other examinations were performed. It is verified that ionized transformer oil caused by the expansion of temperature increases in the leakage current of porous ceramic sensor. It is certification that the leakage current of other parts of porous ceramic is very small(about 2%) compared with the porous ceramic body and it is confirmed that the leakage current in porous ceramic is changed sensitively according to the new oil(NO) and and the degradation oil(DO).

  • PDF

A study on the characteristics of degradation sensor for transformer insulation oil (변압기(變壓器) 절연유(絶緣油) 열화(劣化)센서의 특성연구(特性硏究))

  • Chon, Y.K.;Sun, J.H.;Kang, D.S.;Kim, M.D.;Kweon, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1765-1768
    • /
    • 1996
  • It is well known that the degradation transformer oil is mainly effected to the failure of transformer. In this paper it is discussed the characteristics of the degradation sensor checking transformer oil condition in live line. The degadation sensor composed with base ring, electrodes and porous ceramic passed through the transformer oil and checked the transformer oil condition with sensor's leakage current. It is important to minimize the leakage current of base ring and connection parts. To investigate the leakage current of base ring and connection parts it is examined the characteristics of V-T-I and DC 2 KV and other examinations. It is verified that ionized transformer caused by the expansion of oil temperature increase in the leakage current of porous ceramic sensor. It is certificated that the leakage current of other parts of porous ceramic is very small (about 2 %) than the porous ceramic and it is confirmed that the leakage current in porous ceramic is changed sensitively according to the new oil(NO) and and the degradation oil(DO).

  • PDF

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance (바이오차를 혼입한 콘크리트의 물성 특성과 단열성능에 미치는 영향)

  • Kyoung-Chul, Kim;Kyung-Taek, Koh;Min-Su, Son;Gum-Sung, Ryu;Jae-Yoon, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 2022
  • This study intends to develop an eco-friendly concrete panel mixed with biochars. Experiments about mechanical and thermal properties were conducted on porous biochar concrete, which has insulation and carbon-capture performance. The concrete has a mixing ratio of 0, 5, 10, and 15 % for biochar and a water-binder ratio of 0.35. The unit weight, porosity, and permeability were measured to evaluate the mechanical characteristics. From the results, as the biochar mixing rate increased, the porosity and the permeability increased, but the unit weight decreased. Even though a decreased trend was observed in the compressive strength results, they satisfied the design standard. Since the thermal conductivity was decreased during the increase of contents, biochar could be considered an excellent material for insulation performance. In addition, regression analyses were conducted regarding the relationship of unit weight with porosity, compressive strength with thermal conductivity, and porous with thermal conductivity. From the regression, significant variables for expanding the scope of the application of biochar were presented.

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Thermal conductivity of high temperature porous insulation (다공성 고온 절연체의 열전도도 특성)

  • 조장호;김영채;이성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.504-513
    • /
    • 1997
  • Ideal candidates for the thermal-protection system of advanced spacecraft like Space Shuttle, are FRCI(Fibrous Refractory Composite Insulation) and AETB(Alumina-Enhanced Thermal Barrier). In the present work, we carried out the mathematical modeling and computer simulation of the thermal response of FRCI to heat, pulse, comparing with that of silica. Also, we calculated the conductivity of FRCI as various variables at the temperature range of 100~2000 K.

  • PDF