• Title/Summary/Keyword: Porous Flow Analysis

Search Result 235, Processing Time 0.022 seconds

Characteristics of Thermo-Fluid Flow in Dilution Chamber of Micro-Dilution Tunnel for Diesel Particulate Measurement (디젤매연측정용 마이크로 희석터널의 희석챔버에서의 열유동 특성)

  • 김태권;김성훈;임문혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.90-99
    • /
    • 2002
  • The main purpose of this study lies on the development of micro dilution tunnel based on the Sierra Dilution chamber model. As a primary examination, characteristics of flow and temperature distributions during the steady dilution process in dilution chamber are observed with numerical analysis. The penetration of dilution air through porous tube as well as wall temperature and temperature gradient inside porous tube are examined. The thermophoretic velocity in terms of temperature behavior inside porous tube are defined and examined. Based on the ratio of penetration and thermophoretic velocities, all part of porous tube are shown to be safe from the particulate depositions. However, The inlet portion of porous tube in addition to the portion of impinging of dilution air are marginally safe from the particulate depositions. Generally the safer design against particulate deposition is required in provision f3r steady dilution process and for transient process as well.

Numerical Analysis for Characteristics of Flow Fields and Disinfection Performances in the Clearwell with a Porous media Wall (정수지 내 유동 특성과 유공벽을 이용한 소독능 변화에 대한 수치 해석적 연구)

  • Lee, Suk Won;Rhee, Gwang Hoon;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.755-761
    • /
    • 2007
  • Disinfection performance in clearwell is generally measured by CT, which is expressed by $C{\times}T$. C is represented by disinfection concentration, and T is represented by $T_{10}$ which means 90% contact time in clearwell. In order to improve Disinfection performance, augmentation of $T_{10}$ is required. Guide wall has been generally used to improve $T_{10}$ because $T_{10}$ changes according to flow field. In this study, porous media is proposed instead of guide wall, and disinfection performance between guide wall and porous media wall are compared. Flow field and $T_{10}$ in each clearwell are investigated as well. Improved Disinfection performance appear in case of porous media wall compare to guide wall, and best performance occur in porosity factor ${\beta}$ 1e+4.

Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling (다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석)

  • Jeong, Gil-Wan;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ (축소 APR+ 원자로 모형에서의 내부유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.855-862
    • /
    • 2013
  • A series of 1/5 scale-down reactor flow distribution tests had been conducted to determine the hydraulic characteristics of an APR+ (Advanced Power Reactor Plus), which were used as the input data for an open core thermal margin analysis code. In this study, to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ internal flow, simulations were conducted using the commercial multi-purpose computational fluid dynamics software ANSYS CFX V.14. It was concluded that the porous domain approach for some reactor internal structures could adequately predict the flow characteristics inside a reactor in a qualitative manner. If sufficient computational resources are available, the predicted core inlet flow distribution is expected to be more accurate by considering the real geometry of the internal structures, especially upstream of the core inlet.

DNS STUDY ON THE FLOW CHARACTERISTICS THROUGH SIMPLE POROUS HYDRAULIC FRACTURES (평판형 수압파쇄 균열을 통과하는 다공질유동 특성에 관한 DNS 해석 연구)

  • Shin, C.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • The flow analyses through a porous hydraulic fractures is among the most important tasks in recently developed shale reservoirs but is rendered difficult by non-Darcy effects and geometric changes in the hydraulic fractures during production. In this study, several Computational Fluid Dynamics(CFD) models of hydraulic fractures, with a simple shape such as that of parallel plates, filled with proppants were built. Direct Numerical Simulation(DNS) analyses were then carried out to examine the flow loss characteristics of the fractures. The hydraulic diameters for the simulation models were calculated using the DNS results, and then they were compared with the results from Kozeny's definition of hydraulic diameter which is most widely used in the flow analysis field. Also, the characteristic parameters based on both hydraulic diameters were estimated for the investigation of the flow loss variation features. Consequently, it was checked in this study that the hydraulic diameter based on Kozeny's definition is not accordant to the results from the DNS analyses, and the case using the CFD results exhibits f Re robustness like general pipe flows, whereas the other case using Kozeny's definition doesn't. Ultimately, it is expected that discoveries reported in this study would help further porous flow analyses such as hydraulic fracture flows.

Study on Flow behavior of Liquid Nitrogen for Porous Media in Square-section Cylinder (사각 기둥 실린더 내부 다공성 매질에서의 액화질소의 거동에 대한 연구)

  • Choi, Sung Woong;Lee, Woo Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • The multiphase flow analysis related to phase change can be adapted to lots of areas such as evaporation and condensation has many interesting branches due to complicated phenomenon. In this study, the experimental investigation of cryogenic liquid in the porous media with various densities was shown how the cryogenic liquid behaves in the porous structure. For this study, permeability behaviors under different applying pressure of the glass wool with different bulk densities are discussed. Experimental investigation on the behavior of cryogenic liquefied nitrogen in the porous media is conducted. The result was that the non linearity of pressure gradient with location is increased and the permeability is decreased as the bulk density of glass wool increased. Lastly, simulation results with CFD commercial package program are used to realize the cryogenic liquid's flow in porous media to compare the finding with experimental results.

NON LINEAR VARIABLE VISCOSITY ON MHD MIXED CONVECTION HEAT TRANSFER ALONG HIEMENZ FLOW OVER A THERMALLY STRATIFIED POROUS WEDGE

  • Kandasamy, R.;Hashim, I.;Ruhaila, K.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.161-176
    • /
    • 2008
  • The effect of variable viscosity on MHD mixed convection Hiemenz flow over a thermally stratified porous wedge plate has been studied in the presence of suction or injection. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection and has a power-law variation of the wall temperature. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of thermal diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the magnetic effect, variable viscosity, thermal stratification and suction / injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Comparisons with previously published works are performed and excellent agreement between the results is obtained.

  • PDF

Study on Flow Deflection of Duct and Raw Coal Separation Screen (덕트 및 원탄 선별망 유동 편향에 관한 연구)

  • Semyeong Lim;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-33
    • /
    • 2023
  • In this study, computational fluid dynamics was used to analyze the flow bias generated as air supplied by a fan passes through ducts, piping, and a coal separation screen. The flow bias of the air flow is mostly caused by the spatial characteristics of the fan volute and duct, and the internal baffle and the coal separation screen at the outlet cause strong pressure losses that dampen the flow bias. ANSYS CFX was used for computational fluid dynamics, and since the baffle and the coal separation screen are shaped like perforated plates with many small holes uniformly distributed, actual modeling for analysis was not possible. Therefore, the Porous Loss Model was applied. The evaluation of the flow bias was analyzed based on the velocity distribution of the Porous Loss Model at the outlet surface of the coal separation screen obtained from the computational fluid dynamics results.

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF