• Title/Summary/Keyword: Porous Baffle

Search Result 18, Processing Time 0.018 seconds

A NUMERICAL ANALYSIS OF THE SLOSHING IN A TANK WITH PLATE/POROUS BAFFLES (판형 및 다공형 배플을 포함한 탱크 내 슬로싱에 대한 유동해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.215-222
    • /
    • 2009
  • In the present study, a numerical analysis on the sloshing in a tank with the harmonic motion was investigated. A VOF method was used for two-phase flows inside the sloshing tank and a source term of the momentum equation was applied for the harmonic motion. This numerical method was verified by comparing its results with the available experimental data. The sloshing in a tank causes the instability of the fluid flows and the fluctuation of the impact pressure on the tank. By these phenomena of the tank sloshing, the sloshing problems such as the failure and the noise of system can be generated. For the reduction of these sloshing problems, the various baffles such as the horizontal/vertical plate baffles and the porous baffles inside the tank are installed. With the installations of these baffles, the characteristics of the liquid behavior in the sloshing tank, the impact pressure on the wall, the amplitude of the free surface near the wall and the sloshing noise were numerically analyzed.

  • PDF

Performance Evaluation of a Bioreactor Partially Packed with Porous Media Containing a MA (Microorganism Activator) (미생물 활성물질이 내재된 담체를 이용한 생물반응조의 성능 평가)

  • Park, Jong-Hoon;Hong, Seok-Won;Choi, Yong-Su;Lee, Sang-Hyup;Kim, Seung-Jun;Kang, Seun-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.47-55
    • /
    • 2007
  • The waste water treatment facility at rural and mountainous region in catchment areas of dams should be small scale. The wastewater treatment facility of small scale has some specification as follows;1)simple process, 2)low maintenance cost, and 3)high removal efficiency. So, we developed the bioreactor which can be satisfied with the specification of small scale waste water treatment facility. The bioreactor consisted of the anoxic and oxic zone. The two zones were effectively separated by cone type baffle. By the effective separation through CTB, the nitrification and denitrification reaction occurred effectively. Therefore, the removal efficiency of total nitorgen (TN) increased compared to other types of baffle. And, we put into the bio activated media in oxic zone to increase the concentration and activity of microbiology. The media contained the components which were made of many kinds of the minerals to increase the activity of microbiology. Additionally, we observed that the phosphate removal efficiency increased by bio activated media. This is resulted from the coagulation-sedimentation reaction by mineral in components. The average removal efficiencies of TN and TP during Run 2 were 69 and 89% which were 4 and 25% higher than those during Run 1 without the MA, respectively. For BOD, COD, SS and TKN, the average removal efficiencies at Run 2 were slightly higher than those at Run 1. Therefore, we could maintain the high concentration and high activity of microbiology through bioreactor developed in this study. And the removal efficiency of TN and TP increased.

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(I) FLOW CHARACTERISTICS (유동분배판에 의한 원통 다관형 열교환기의 성능 특성에 관한 수치해석적 연구(I): 유동특성)

  • Park, Y.M.;Chung, H.T.;Kim, H.B.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.20-23
    • /
    • 2014
  • The flow pattern inside the inlet chamber of the tube side is one of the key parameters influencing on the performances of the shell-and-tube type of heat exchangers(STHE). In order to improve the flow distribution, the baffle shaped as the porous plate is installed in the inlet chambers. In the present study, numerical simulation has been performed to investigate the flow features of the tube side of the STHE in sense of the hydraulic performances. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers with the proper turbulent models. Computational domain is ranged in the whole of the tube side of the STHE. The numerical results showed that the presence of the baffles improves the redistribution of the flow injecting to the tube bundels. The good agreements of the numerical results with the experimental results of PIV measurements have been shown for the validation of the numerical methods adopted in the present papers.

NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(II) HEAT TRANSFER CHARACTERISTICS (유동분배판에 의한 원통-다관형 열교환기의 성능 특성에 관한 수치해석적 연구(II): 전열특성)

  • Park, Y.M.;Lee, T.H.;Chung, H.T.;Kim, H.B.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.28-32
    • /
    • 2016
  • In the previous study, it is proved by numerical simulation that the baffle shaped as the porous plate installed in the inlet chambers improves the redistribution of the flow injecting to the tube bundles. In the present study, numerical simulation has been performed to investigate the effects of the flow distributors on the thermal characteristics of the shell and tube heat exchangers. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers including the thermal conditions on the shell sides. The numerical results showed that the presence of the baffles improves the redistribution of the heat transfer to the tube bundles though the overall performance drop slightly on the present flow conditions.

Simulation of the Hydrogen Conversion Rate Prediction for a Solar Chemical Reactor (태양열 화학반응기의 수소전환효율 예측 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.294-299
    • /
    • 2008
  • Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.

  • PDF

Experimental study on liquid sloshing with dual vertical porous baffles in a sway excited tank

  • Sahaj, K.V.;Nasar, T.;Vijay, K.G.
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.353-371
    • /
    • 2021
  • Sloshing behavior of liquid within containers represents one of the most fundamental fluid-structure interactions. Liquid in partially filled tanks tends to slosh when subjected to external disturbances. Sloshing is a vicious resonant fluid motion in a moving tank. To understand the effect of baffle positioned at L/3 and 2L/3 location, a shake table experiments was conducted for different fill volumes of aspect ratio 0.163, 0.325 and 0.488. For a fixed amplitude of 7.5 mm, the excitation frequencies are varied between 0.457 Hz to 1.976 Hz. Wave probes have been located at both tank ends to capture the surface elevation. The experimental parameters such as sloshing oscillation and energy dissipation are discussed here. Comparison is done for with baffles and without baffles conditions. For both conditions, the results showed that aspect ratio of 0.163 gives better surface elevation and energy dissipation than obtained for aspect ratio 0.325 and 0.488. Good agreement is observed when numerical analysis is compared with the experiments results.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.