• Title/Summary/Keyword: Porous $TiO_2$

Search Result 219, Processing Time 0.028 seconds

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

Synthesis of Porous TiO2-SiO2 Particles by Self-assembly of Nanoparticles (나노입자들의 자기조립에 의한 TiO2-SiO2 다공체 제조)

  • Oh, Kyoung Joon;Kim, Sun Kyung;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.7 no.3
    • /
    • pp.79-85
    • /
    • 2011
  • Porous $TiO_2-SiO_2$ particles were synthesized by co-assembly of nanoparticles of $TiO_2$ and $SiO_2$ in evaporating aerosol droplets. Poly styrene latex (PSL) particles were employed as a template of porous particles. Flowrate of dispersion gas, weight ratio of $TiO_2/SiO_2$ and $SiO_2$ concentration in the precursor, and PSL size were chosen as process variables. The morphology, crystal structure, chemical bonding, and pore size distribution were analyzed by FE-SEM, XRD, FT-IR, BET. The morphology of porous $TiO_2-SiO_2$ particles was spherical and the average particle size range were from 1 to $10{\mu}m$. The particles were composed of meso and macro pores. The average particle diameter and pore volume of the as prepared particles were dependant on process variables. It was found that UV-Vis absorption of the porous particles was comparable with pure $TiO_2$ nanoparticles even though $TiO_2/SiO_2$ ratio is low in the porous particles.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

NOx-removal and Sound-absorption Performances of Photocatalytic Porous Concrete Prepared by Various TiO2 Application Methods (TiO2 적용방법에 따른 포러스 콘크리트의 질소산화물 제거성능 및 흡음특성)

  • Yoon, Hyunno;Seo, Joonho;Kim, Seonhyeok;Jang, Daeik;Bae, Jinho;Lee, Haeng-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • The present study investigates NOx-removal and sound-absorption performances of photocatalytic porous concrete prepared by various TiO2 application methods. Photocatalytic porous concrete samples were prepared by one of the following: 1) mechanically mixing TiO2 during casting; 2) mixing bottom ash aggregate pretreated with TiO2 during casting; and 3) spraying TiO2 solution to the normally fabricated porous concrete. The test results indicated that the mechanical mixing of TiO2 decreased the compressive strength as the added TiO2 content increased. The use of pretreated bottom ash aggregate reduced the porosity, yet the compressive strength of the concrete was similar to that measured from the former method. Porous concrete samples sprayed with the TiO2 solution exhibited enhanced compressive strength, while the porosity was analogous to those measured from other methods. The NOx-removal performance was the highest in the samples sprayed with the TiO2 solution, followed by the samples using pretreated bottom ash aggregate and mechanically mixed TiO2. The samples with mechanically mixed TiO2 identified a relationship between soundabsorption performance and porosity. However, no particular tendency was observable in the samples with other TiO2 application methods.

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method (다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅)

  • 한요섭;박재구
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.548-554
    • /
    • 2004
  • A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.

Addition Effects of Alkali Metal Oxide on Some Properties of Porous Glass-Ceramics in the $CaO-TiO_2-P_2O_5$ System ($CaO-TiO_2-P_2O_5$계 다공질 결정화 유리의 물성에 미치는 알카리 금속 산화물의 첨가효과)

  • 장순규;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1337-1345
    • /
    • 1994
  • Glasses in the system of 45CaO-25TiO2-30P2O5 containing 1 mole% of M2O(M=Li, Na, K) were melted and crystallized. And their crystal phases were Ca3(PO4)2, CaTi4(PO4)6, and TiO2. Porous glass-ceramics with skeleton of two crystal phase CaTi4(PO4)6 and TiO2 were prepared by selective leaching of Ca3(PO4)2 with 0.1 N-HCl. Glass transition temperature(Tg) and crystallization temperature(Tc) were decreased by addition of 1 mole% alkali metal oxide. Pore size of porous glass-ceramics was increased with increasing heat treatment temperature and its dependence on heat treatment temperature was decreased with addition of Na2O and K2O. It was found that porous glass-ceramics of parent glass and containing 1mole% M2O(M=Li, Na, K) composition had maximum specific surface area, porosity and maximum of crystallzed phase by heat treatment at 80$0^{\circ}C$, 76$0^{\circ}C$, 78$0^{\circ}C$, 80$0^{\circ}C$ respectively.

  • PDF

Removal of Methylene Blue from Water Using Porous $TiO_2$/Silica Gel Prepared by Atomic Layer Deposition

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.160-160
    • /
    • 2011
  • In the present work, $TiO_2$ fiilms supported by porous silica gel with high surface area synthesized by atomic layer deposition(ALD). Porous structure of silica substrate could be maintained even after deposit large amount of $TiO_2$ (500 cycles of ALD process), suggesting the differential growth mode of $TiO_2$ on top surface and inside the pore. All the $TiO_2$-covered silica samples showed improved MB adsorption abilities, comparing to bare one. In addition, when silica surface was covered with $TiO_2$ films, MB adsorption capacity was almost fully recovered by re-annealing process (500$^{\circ}C$, for 1 hr, in ambient pressure), whereas MB adsorption capacity of bare silica was decreased after re-heaing process. FT-IR study demonstrated that $TiO_2$ film could prevent deposition of surface-bound intermediate species during thermal decomposition of adsorbed MB molecules. Photocatalytic activity of $TiO_2$/silica sample was also investigated.

  • PDF

Antibacterial Properties of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$Porous Class Ceramics ($Ag_2-Li_2O-CaO-TiO_2-P_2O_5$계의 다공성 글라스 세라믹스의 항균 특성)

  • Kang, Won-Ho;Yoon, Young-Jin;Lee, Yong-Soo;Hong, Bum-Soo;Yeom, Gon;Kim, Chang-Soo;Seok, Man-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • Porous glass ceramics composed of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$-CaO with 0.05-1.5 mole CuO were prepared by melting and 2 step heat treatment for nucleation at $610^{\circ}C$ and crystallization at $840^{\circ}C$. $\beta$-$Ca_3(PO_4)_2$crystal phase was selectively leached out in 1N-HC1 solution for 3 days, leaving $AgTi_2(PO_4)_3$and $LiTi_2(PO_4)_3$crystal phases. Antibacterial effects and characterizations of the porous glass ceramics were investigated. Staphylococcus aureus and Salmonella typhi bacteroa were used in this study. It was found that the resultant porous glass ceramics show excellent bacteriostatic properties.

  • PDF

Comparison of physical properties and dye photo-degradation effects for $carbon/TiO_2$ complexes

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.196-203
    • /
    • 2007
  • We have studied a method for the preparation of hybrid $carbon/TiO_2$ complexes involving pitch coating, pitch binding and the penetration of titanium n-butoxide(TNB) solution with porous carbon. The photocatalysts were investigated with surface textural properties and SEM morphology, structural crystallinity and elemental identification between porous carbon and $TiO_2$, and dye decomposition performance. For the all $carbon/TiO_2$ complexes prepared by some kinds of different methods, the excellent photocatalytic effect for dye degradation should be attributed to the both effects between photo-decomposition of the supported $TiO_2$ and adsorptivity of the porous carbons.

An Electrochemical Reduction of TiO2 Pellet in Molten Calcium Chloride (CaCl2 용융염에서 TiO2 펠렛의 전기화학적 환원반응 특성)

  • Ji, Hyun-Sub;Ryu, Hyo-Yeol;Jeong, Ha-Myung;Jeong, Kwang-Ho;Jeong, Sang-Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2012
  • A porous $TiO_2$ pellet was electrochemically converted to the metallic titanium by using a $CaCl_2$ molten salt system at $850^{\circ}C$. Ni-$TiO_2$ and graphite electrodes were used as cathode and anode, respectively. The electrochemical behaviour of $TiO_2$ pellet was determined by a constant voltage control electrolysis. Various reaction intermediates such as $CaTiO_3$, $Ti_2O$ and $Ti_6O$ were observed by XRD analysis during electrolysis of the pellet. Once $TiO_2$ pellet was converted to a porous metallic structure, the porous structure disappeared by sintering and shrinking with increasing the reaction time at high temperature.