• Title/Summary/Keyword: Porosity.

Search Result 3,584, Processing Time 0.034 seconds

Effect of Monoculture and Mixtures of Green Manure Crimson Clover (Trifolium incarnatum) on Rice Growth and Yield in Paddy (답리작에서 녹비작물 크림손클로버 단파 및 혼파가 벼 생육 및 수량에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, In-Seok;Choi, Bong-Su;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.847-852
    • /
    • 2011
  • Green manure crops are mainly used to reduce the application of chemical fertilizers. Mixture of green manure crops have beneficial effects in agroecosystem. In this study, experiments were conducted to evaluate the effects of monoculture and mixtures of crimson clover (Trifolium incarnatum) on rice growth and yield in paddy. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from Oct. 2007 to Oct. 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Seeding rates of crimson clover (CC) were consisted of monoculture (CC2, 3, 4 kg and hairy vetch 5 kg $10a^{-1}$) and mixtures (CC 2 + barley 7, CC 3 + barley 7, CC 4 + barley 7, and CC2 + hairy vetch $5kg\;10a^{-1}$). Seeds were drilled by partial tillage machine on 9th Oct. in 2007. Monoculture and mixture of crimson clover as a green manure crop was incorporated in soil for rice cultivation on 15th May in 2008. Chemical fertilizers had not been applied to monoculture and mixture plots. The biomass and N production of monoculture plots were lower than mixture plots. The biomass and N production of CC 2 + hairy vetch $5kg\;10a^{-1}$ plot were the highest among mixtures treatments. In rice growing season, ammonium nitrogen concentrations in soil were a little high trends at CC 2 + hairy vetch $5kg\;10a^{-1}$ plot. And soil bulk density and porosity were improved at mixture plot after rice harvesting. The rice yield of CC 2 + hairy vetch $5kg\;10a^{-1}$ plot was not significantly different from conventional practice plot. These results indicated that cropping of crimson clover with hairy vetch mixture was better than barley mixture for environmental friendly rice cultivation.

Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit (하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향)

  • Yang, Chang-Hyu;Jeong, Ji-Ho;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Kim, Young-Doo;Jung, Won-Kyo;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.981-986
    • /
    • 2010
  • This study was carried out to investigate the effects of fertilizer and organic resource annual dressing for 30 years of Jeonbug series (silt loam) on soil properties and rice N uptake in paddy field soil. In the study field, treatments including control (NPK), NPK+rice straw, NPK+rice straw compost and nitrogen fertilization levels at 0, 100, 150, 200, 250 kg $ha^{-1}$ have been imposed for 30 years. Soil hardness and bulk density decreased from 15.7 mm and 1.381 Mg $m^{-3}$ in the control to 12.5 mm and 1.244 Mg $m^{-3}$ in NPK+rice straw compost treatment, respectively, indicating improvement of soil physical conditions such as porosity. Co-application of straw compost with NPK also result in a better chemical properties than NPK alone as it increased available phosphate (from 96 to 133 mg $kg^{-1}$), available silicate (from 81 to 116 mg $kg^{-1}$), and cation exchange capacity (from 9.8 to 11.4 $cmol_c\;kg^{-1}$). Soil organic matter concentration of top soil (0 to 7.5 cm in depth) was higher in NPK+rice straw and NPK+rice straw compost than in control. Fertilizer N uptake amount was much higher in NPK+rice straw (nitrogen fertilization level; 250 kg $ha^{-1}$) and NPK+rice straw compost (nitrogen fertilization levels; 200, 250 kg $ha^{-1}$) plots compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Nitrogen use efficiency was showed significantly high in the NPK+rice straw compost (nitrogen fertilization levels; 100, 150 kg $ha^{-1}$) plot compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Therefore, it was suggested that application of organic inputs is helpful in improving soil fertility and physical conditions and thus in N uptake.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

Effect of Green Manure Crops Incorporation with Rice Cultivation on Soil Fertility Improvement in Paddy Field (벼 재배시 녹비작물 혼입에 따른 지력개선 효과)

  • Yang, Chang-Hyu;Ryu, Jin-Hee;Kim, Taek-Kyum;Lee, Sang-Bog;Kim, Jae-Duk;Baek, Nam-Hyun;Kim, Sun;Choi, Weon-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.371-378
    • /
    • 2009
  • This study was carried out to investigate the improvement effect of soil fertility by incorporation of GMC(green manure crops) at rice cropping after cultivation GMC such as the barley for alternative rye in paddy field over the past two years(2006~2007). Plots, which consisted of incorporation time of GMC as rye; heading stage, barley; heading stage, heading stage of rye and 10days after heading stage were divided by amount of applied rates; standard fertilizer fertilization, diagnosis fertilization and non-fertilization. we investigated change of soil physico-chemical properties, degree of decomposition on GMC in soil, growth and yield potential. The obtained results were summarized as follows. The fresh weight of GMC at incorporation time on heading stage of rye, heading stage and 10days after heading stage of barley were $2,715,\;2,352,\;2,867kg\;10a^{-1}$ respectively. Content of total nitrogen at three incorporation times was 1.31, 1.46, 1.38% and the C/N ratio were 33.4, 28.7, and 34.6, respectively. Some soil physical properties, such as soil hardness and bulk density tended to decrease with incorporation of GMC, while surface soil depth and porosity were increased. Some soil chemical properties, such as content of exchangeable cations and cation exchangeable capasity(CEC) were increased with incorporation of GMC compared with before experiment. Rice yields was increased 3~9% in diagnosis application plots on application of barley compared with control($559kg\;10a^{-1}$) and incorporation of barley caused to improve perfect kernel ratio 73.6~78.7% in appearance characteristics of brown rice compared with cotrol(73.0%). It was found that incorporation with 10days after heading stage of barley was more effective to reduce chemical nitrogen fertilizer and to improve soil fertility.

The Body of Male Domination and the Problem of the Phallic Ideology: The Strategy of the Deconstruction of Penis-Narcissism and the Penis-Cartel (남성지배의 몸과 남근 이데올로기의 문제: 페니스 나르시시즘과 페니스 카르텔의 해체전략)

  • YUN, Ji-Yeong
    • Journal of Korean Philosophical Society
    • /
    • no.123
    • /
    • pp.137-185
    • /
    • 2018
  • This article aims to deconstruct the mechanism of male domination that constantly reproduces the hegemonic class of men. In order to overcome misogyny, we should no longer deny the ontological dimension of the reality of women's oppressions and the pre-eminence of the material condition of women's existence. In addition, the possibility of the category of women as a modality of resistance should be taken into consideration. First, I will highlight the correlation between penis and phallus according to which the phallus refers to the penis which is malleable and fragile and which disappears without being castrated by the external factor. From here we could deduce the fragility and imperfection, the non-absoluteness of the phallic order. Secondly, I will analyze the mechanism of penis-narcissism, which is the modality of the constitution of the individual identity of man. The penis is not only a physiological organ, but a site of self-estimation and the validity of the succession of power and authority of the father's law. With this penis-narcissism, man is constituted as a hegemonic body that can let itself go without worrying about the reactions of others. Thirdly, I will focus on the mechanism of the penis-cartel which is the modality of the formation of the collective identity. The penis-cartel is reinforced by the mutual affirmation of the superiority of men among themselves, but also by the permission and the tacit agreement of their absurdity and lack of rationality and corruption. Because the privilege of men is not monopolized by a small part of the elite, but is consciously and unconsciously shared by all men who are part of the hegemonic and collective category. In order to deconstruct the penis-narcissism and the penis-cartel, it is necessary to demonstrate that the penis is not a self-sufficient body, nor a closed and impermeable body, but that it is a porous body where the organ serves both ejaculation and urinary ejection. The penis is a porous body that is at once the site of sublimity and degradation, purity and impurity. In addition, the penis is no longer an all-powerful and aggressive organ, but it is a malleable and fluid flesh that constantly changes its shape. Linked to a phallus-organ that is the notion of Jacques-Alain Miller, it is a site of deficiency and vulnerability that is not the axis of the penis-cartel. It is through the notion of the double porosity of the penis and the phenomenology of the flesh of the penis, I try to provide the modality of undoing the reproductive mechanism of predatory masculinity. Because this would be an effective strategy to overcome misogyny.

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Application Effects of Biochar Derived from Pruned Stems of Pear Tree on Growth of Crops and Soil Physico-chemical Properties (배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Park, Jung-Soo;Shim, Jae-Man;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • This study was conducted to develop the manufacturing method of biochar using pruned stems of pear tree and its application effect on the crop growth and soil physico-chemical properties. In this study, biochar derived from pruned stems of pear tree at heating temperature of $300^{\circ}C$, $500^{\circ}C$ and $700^{\circ}C$ in heating times of 2, 3 and 4 hours, were tested in the changes of their chemical properties during biochar processing. The pH, Exch. K, Exch. Mg and cation exchange capacity (CEC) increased as the pyrolysis temperature increased during the production of biochar, and the change of these properties rapidly occurred at $500^{\circ}C$. However, as the pyrolysis temperature increased, ash content increased and total carbon (T-C), yield decreased. And the change of the properties in response to the heating time was not shown. It was thought that it would be desirable to set the production conditions of biochar at $500^{\circ}C$ for 2 hours in consideration of the change of chemical properties and the ash content and yield. And also, were conducted the experiments to establish manufacturing method of farm-made biochar using drum biochar manufacturing machine and investigate the application effects of biochar on the cultivation of chinese cabbage and tomato. Application of biochar derived from pruned stems of pear tree could enhance pH, organic matter (OM), total carbon (T-C) of soil. On the other hand, soil electrical conductivity (EC), NO3-N were lowered compared to the control which has no application. The bulk density, porosity and aggregate formation of soil were improved by biochar application. The fresh matter yields of chinese cabbage and tomato were significantly increased in proportion to the application rate of biochar. This study demonstrated the effect of the biochar derived from agricultural byproduct to be as a low cost potential soil ameliorant by physico-chemical properties in eco-friendly greenhouse cultivation.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.