• Title/Summary/Keyword: Porosity.

Search Result 3,616, Processing Time 0.034 seconds

Electrochemical Properties of Dye-sensitized Solar Cells with Improving the Surface Structure (표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.153-158
    • /
    • 2012
  • We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

Thermal Emissivity of Nuclear Graphite as a Function of Its Oxidation Degree (1) -Effects of Density, Porosity, and Microstructure-

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.225-229
    • /
    • 2009
  • Thermal emissivity of commercial nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) following changes in oxidation degrees were examined. Specimens were oxidized to 0%, 5%, and 10% in air flow of 5l/min at $600^{\circ}C$ using a furnace, and the thermal emissivities were measured using an infrared spectrum analyzer. The measuring temperatures for the thermal emissivity were $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ $500^{\circ}C$. Also density and porosity of the specimens were observed to compare with thermal emissivity. Results showed that emissivity increased with oxidation, and the 10% oxidized NBG-18 showed the highest emissivity (0.890) which value is larger for 24% than the value of as-received specimen. Investigation of factors affecting the emissivity revealed that increases in the surface roughness and porosity due to oxidation were responsible for the increase in emissivity after oxidation.

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Three Dimensionally Ordered Microstructure of Polycrystalline TiO2 Ceramics with Micro/meso Porosity

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.227-233
    • /
    • 2016
  • In order to make a highly ordered three-dimensional porous structure of titania ceramics, porogen beads of PS [Polystyrene] and PMMA [poly(methylmetacrylate)] were prepared by emulsion polymerization using styrene monomer and methyl methacrylate monomer, respectively. The uniform beads of PS or PMMA latex were closely packed by centrifugation as a porogen template for the infiltration of titanium butoxide solution. The mixed compound of PS or PMMA with titanium butoxide was dried and the dry compacts were calcined at $450^{\circ}C-750^{\circ}C$ according to the firing schedule to prepare micro- and meso- structures of polycrystalline titania with monodispersed porosity. Inorganic frameworks composed of $TiO_2$ were formed and showed a three Dimensionally Ordered Microstructure [3DOM] of $TiO_2$ ceramics. The pulverized particles of the $TiO_2$ ceramic skeleton were characterized using XRD analysis. A monodispersed crystalline micro-structure with micro/meso porosity was observed by FE-SEM with EDX analysis. The 3DOM $TiO_2$ skeleton showed opalescent color tuning according to the direction of light.

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (Si:C Ratio가 다공질 Self-Bonded SiC 세라믹스의 기공율과 곡강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.285-289
    • /
    • 2008
  • Porous self-bonded silicon carbide (SiC) ceramics were fabricated at temperatures ranging from 1750 to $1850^{\circ}C$ using SiC, silicon (Si), and carbon (C) powders as starting materials. The effect of the Si:C ratio on porosity and strength was investigated as a function of sintering temperature. It was possible to produce self-bonded SiC ceramics with porosities ranging from 36% to 43%. The porous ceramics showed a maximal porosity when the Si:C ratio was 2:1 regardless of the sintering temperature. In contrast, the maximum strength was obtained when the ratio was 5:1.

The Weldability of Primer-coated Steel for Shipbuilding by $CO_2$ Laser (조선용 Primer코팅강판의 $CO_2$레이저 용접성)

  • Park, Hyun-Joon;Kim, Jong-Do;Kim, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.316-321
    • /
    • 2003
  • The spatter and porosity could be occurred during $CO_2$ CW laser welding of Primer-coated Steel for Shipbuilding. This study has suggested an alternative idea by examining of weld-defect formation mechanism. The primer-coated plate has caused the spatter, humping bead and porosity and these are main part of the welding defect, attributed to the powerful vaporizing pressure of primer attached on the base metal. The zinc of primer has a boiling point that is the lower temperature than melting point of steel. Zinc va}X)f will build up at the interface between the two sheets and this tends to deteriorate the quality of the weld by ejecting weld material from lap position or leaving porosity. Therefore introducing a small gap clearance in the lap position, the zinc vapor could escape through it and sound weld beads can be acquired. In conclusion, we suggested the occurred and prevented mechanism of weld defects with searching the factor.

  • PDF

Studies on the Soil Management in Ginseng Preplanting Soil (II) Relationship between the Soil Characteristics of 2-Year-Old Ginseng Field Soil and the Ratio of Missing Plant (인삼식부 예정지의 토양관리에 관한 연구 제2보. 2연근포지의 토양 특성변화 및 결주율과의 관계)

  • 이일호;박찬수
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 1985
  • The study was conducted to investigate the changes of soil physico-chemical properties between soils of preplanting fields and 2 years old ginseng fields, and compare the missing plant rate among the 2 years 016 ginseng fields. 1, The missing plant rate of 2 years old ginseng was high in sand loam while low in clay loam soil texture, soil porosity and NO3-N were remarkably increased in 2 years old ginseng field than preplanting soil, as the clay content was increased, soil porosity seemed to be increased but exchangeable nitrogen decreased. 2. The preplanting soil management methods did not significantly influenced on the missing plant rate and soil porosity in 2 years old ginseng fields, However NO3-N content and Fusarium density seemed to be decreased as the plow frequency was increased, exchangeable nitrogen content, whereas, seemed to be increased with more organic matter. 3. Differences of clay content (below 15% and above 20% of clay content) was significantly influenced on soil porosity, bulk density, total nitrogen, organic matter and P2O5 content. 4, Missing rate showed negative correlation with clay, soil moisture, and organic matter content but positive corelation with NO3-N in 2 years old ginseng fields.

  • PDF

Controlling the Porosity of Particle Stabilized Al2O3 Based Ceramics

  • Pokhrel, Ashish;Park, Jung-Gyu;Jho, Gae-Hyong;Kim, Jin-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.600-603
    • /
    • 2011
  • The microstructure of particle stabilized wet foams can be tailored by using parameters including the amphiphile concentration, contact angle, and surface tension. The influence of these parameters on the porosity is satisfactorily described in terms of a combined influence of the contact angle and surface tension of the initial suspensions that are directly affected by the amphiphile concentration. The resulting macroporous structures exhibited a total porosity of 82%. The foam cells were predominantly closed due to the air bubbles of the original wet foams being completely covered.