• Title/Summary/Keyword: Porosity improvement

Search Result 172, Processing Time 0.027 seconds

A study of DSC using Ultrasonic and Thermal treatment on Photo-Electrode (염료감응형 태양전지 광전극 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Kim, Mi-Jeong;Sim, Ji-Yong;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1291-1292
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of DSC.[1] Using of the surface treatment, it can be raise up porosity of $TiO_2$ nano-crystalline structure on photo-electrode. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_2$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

  • PDF

Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF (초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과)

  • Joo, Yunkon;Yoon, Jaehong;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

Growth Characteristic of Pinus densiflora by Soil Generated at Civil Works Site (현장발생토 활용 식재기반 조성유형별 소나무 생육 특성 평가)

  • Oh, Deuk-Kyun;Kim, Phil-Lip;Yoon, Yong-Han;Kim, Won-Tae
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.655-667
    • /
    • 2019
  • This research aims to identify the possibility of developing A horizon resources that can be used for construction and civil engineering work. As such, the utility of A horizon resources was examined by establishing planting ground through a mixture of soil layers and by analyzing the growth and development of Pinus densiflora. The physicochemical and physical properties of the soil were as follows: the A horizon was sandy clay loam, B horizon was sandy loam, and the mixture of two layers appeared as sandy loam, which was identical to the B horizon. The experimental groups did not show any significant difference in their physical properties of porosity and degree of water-stable aggregates. With regards to chemical properties, the A horizon as well as the mixture of A and B horizon showed acidity while the B horizon showed alkalinity. The figures of organic matter, total nitrogen, available phosphate, and replaceable potassium were greater as the A horizon content increased, whereas the figures of replaceable calcium, replaceable magnesium, and conductivity increased as the A horizon content decreased. As a result of the growth and development of Pinus densiflora in each planting ground, the final survival rates were all above 100%. However, the tree height and the rate of growth for the diameter of root were higher in the order of A horizon > A horizon + B horizon > B horizon,indicating that the increased A horizon content is related to the growth and development of Pinus densiflora. The treatment of soil with improvement agents, used to recover the functions of in-situ soil showing poor growth and development, did not have a clear impact on the soil texture and porosity. However, the degree of water-stable aggregates increased significantly when using O horizon as the soil improvement agent among the types of in-situ soil. In contrast, all items related to the chemical properties showed significant differences following the treatment by soil improvement agents. The survival rate according to the treatment of soil improvement agents for the growth and development of Pinus densiflora was higher in the order of organic horizon = no treatment > compound fertilizer > organic fertilizer + compound fertilizer > organic fertilizer; this result was statistically significant with a marginal significance value of the log-rank test(p < 0.05).

Improvement of Physicochemical Properties and Turfgrass Growth by Root Zone Mixture of Soil Amendment 'Profile' (토양개량제 '프로파일'의 혼합에 따른 토양의 물리화학성 및 한지형 잔디의 생육 개선)

  • Kim, Young-Sun;Lim, Hye-Jung;Ham, Soun-Kyu;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.262-271
    • /
    • 2017
  • This study was conducted to evaluate incorporation ratio of soil amendment 'Profile' to improve soil physicochemical properties and turfgrass growth. The soil amendment was added 0 (sand only), 3, 5, 7, and 10% to USGA Green-spec green sand soil. As incorporated with more 'Profile' amendment, soil electrical conductivity (EC), cation exchangeable capacity (CEC), capillary porosity and total porosity of root zone were increased than those of control, while bulk density and hydraulic conductivity decreased. Turfgrass index and clipping yield of creeping bentgrass grown in sand soil incorporated with 7% 'Profile' were improved than those of control. Correlation coefficient of turf color index and incorporation ratio of the soil amendment 'Profile' was found to show significantly positive correlation. These results indicated that application of the soil amendment 'Profile' to sand soil in golf course green improved turfgrass growth and quality by increasing CEC and porosity of root zone.

Performance improvement of membrane distillation using carbon nanotubes

  • Kim, Seung-Hyun;Lee, Tae-Min
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.367-375
    • /
    • 2016
  • Although the bucky paper (BP) made from carbon nanotubes (CNTs) possesses beneficial characteristics of hydrophobic nature and high porosity for membrane distillation (MD) application, weak mechanical strength of BP has often prevented the stable operation. This study aims to fabricate the BP with high mechanical strength to improve its MD performance. The strategy was to increase the purity level of CNTs with an assumption that purer CNTs would increase the Van der Waals attraction, leading to the improvement of mechanical strength of BP. According to this study results, the purification of CNT does not necessarily enhance the mechanical strength of BP. The BP made from purer CNTs demonstrated a high flux ($142kg/m^2{\cdot}h$) even at low ${\Delta}T$ ($50^{\circ}C$ and $20^{\circ}C$) during the experiments of direct contact membrane distillation (DCMD). However, the operation was not stable because a crack quickly formed. Then, a support layer of AAO (anodic aluminum oxide) filter paper was introduced to reinforce the mechanical strength of BP. The support reinforcement was able to increase the mechanical strength, but wetting occurred. Therefore, the mixed matrix membrane (PSf-CNT) using CNTs as filler to polysulphone was fabricated. The DCMD operation with the PSf-CNT membrane was stable, although the flux was low ($6.1kg/m^2{\cdot}h$). This result suggests that the mixed matrix membrane could be more beneficial for the stable DCMD operation than the BP.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Effects of Raw Materials for Papermaking and Physical Treatment on the Pore Structure and Paper Properties (제지 원료의 특성 및 물리적 처리가 종이의 기공 구조 및 물성에 미치는 영향)

  • Won, Jong-Myoung;Nam, Ki-Young;Chung, Soon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Effects of pulp type, refining and filler type on the pore characteristics and physical properties of paper were investigated. HwBKP, SwBKP and BCTMP are used to study the effect of pulp type in this study. The effects of each filler (PCC, GCC and talc) and the combination of PCC/GCC were also studied. Highest bulk, pore volume and light scattering are obtained from BCTMP and PCC. It was found that the pore size and pore volume are important in light scattering in paper structure. It was found that PCC was the most effective filler for the improvement of the bulk and light scattering because of the increase in pore volume which can scatter light, but the increase of PCC content was not so effective in the improvement of bulk.

Corrosion Behavior of TiN Ion Plated Steel Plate(I)-Effects of Ti interlayer and TiN coating thickness (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I)-Ti 하지 코팅 및 TiN 코팅 두께의 영향)

  • Yeon, Yun Mo;Han, Jeon Geon;Kim, Dae Jin;Bae, Eun Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.34-34
    • /
    • 1991
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating TiN was are ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N H2SO4 as well as salt spray test. Porosity of each coating was also tested by using SO2 test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of 2$\mu\textrm{m}$ and 3$\mu\textrm{m}$ prior to 2$\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

Corrosion Behavior of TiN Ion Plated Steel Plate(I) -Effects of Ti interlayer and TiN coating thickness- (TiN 이온 플레이팅한 강판의 내식성에 관한 연구(I) - Ti 하지 코팅 및 TiN 코팅 두께의 영향 -)

  • 연윤모;한전건;김대진;배은현
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • Corrosion behavior of TiN coated steel was studied in terms of thickness of interlayer Ti and TiN coating. TiN was arc ion plated to a thickness of 1$\mu\textrm{m}$ and 2$\mu\textrm{m}$ respectively with interlayer coating of Ti of 1$\mu\textrm{m}$, $2\mu\textrm{m}$ and $3\mu\textrm{m}$. Corrosion resistance of TiN coated steel was evaluated by anodic palarization test in 1N $H_2$SO$_4$ as well as salt spray test. Porosity of each coating was also tested by using $SO_2$ test method. Corrosion current density decreased with increasing TiN coating thickness and Ti interlayer coating markedly enhanced the corrosion resistance. Ti interlayer coating of $2\mu\textrm{m}$ and $3\mu\textrm{m}$ prior to $2\mu\textrm{m}$ TiN coating decreased the corrosion current density of active range by an order of 4 and that of passive range by an order of 2. This improvement was associated with the retardation of corrosive agent penetration with increasing coating thickness and inherent corrosion resistance of Ti interlayer. Ti interlayer coating was also very effective in improvement of corrosion resistance under salt atmosphere.

  • PDF