DOI QR코드

DOI QR Code

Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF

초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과

  • Joo, Yunkon (Engineering Research Center(ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Yoon, Jaehong (Department of Materials Science and Engineering, Changwon National University) ;
  • Lee, Jehyun (Department of Materials Science and Engineering, Changwon National University)
  • 주윤곤 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 윤재홍 (창원대학교 신소재공학부) ;
  • 이재현 (창원대학교 신소재공학부)
  • Received : 2018.11.26
  • Accepted : 2018.12.13
  • Published : 2019.01.27

Abstract

The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

Keywords

References

  1. B. S. Mann and V. Arya, Wear, 249, 354 (2001). https://doi.org/10.1016/S0043-1648(01)00537-3
  2. A. K. Maiti, N. Mukhopadhyay and R. Raman, Surf. Coat. Technol., 201, 7781 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.014
  3. T. Y. Cho, J. H. Yoon and K. S. Kim, J. Korean Inst. Surf. Eng., 39, 295 (2006).
  4. L. Zhao, M. Maurer and F. Fischer, Wear, 257, 41 (2004). https://doi.org/10.1016/j.wear.2003.07.002
  5. T. Y. Cho, J. H. Yoon and K. S. Kim, Eng. Res. Tech., 6, 289 (2006).
  6. M. F. Morks, Y. Gao, N. F. Fahim, F. U. Yingqing, and M. A. Shoeib, Surf. Coat. Technol., 199, 66 (2005) https://doi.org/10.1016/j.surfcoat.2005.02.159
  7. J. A. Picas, A. Forn and A. Igartua, Surf. Coat. Technol., 174-175, 1095 (2003). https://doi.org/10.1016/S0257-8972(03)00393-1
  8. T. Sudaprasert, P. H. Shipway and D. G. McCartney, Wear, 255, 943 (2003). https://doi.org/10.1016/S0043-1648(03)00293-X
  9. L. Zhao, M. Maurer and F. Fischer, Surf. Coat. Technol., 185, 160 (2004). https://doi.org/10.1016/j.surfcoat.2003.12.024
  10. B. Wielage, A. Wank and H. Pokhmurska, Surf. Coat. Technol., 201, 2032 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.049
  11. X. Guozhi, Z. Jingxian, L. Yijun, Mater. Sci. Eng., A, 460-461, 351 (2007). https://doi.org/10.1016/j.msea.2007.01.064
  12. N. Y. Sari and M. Yilmaz, Mater. Des., 27, 470 (2006). https://doi.org/10.1016/j.matdes.2004.11.020
  13. C. H. Lee and K. O. Min, Surf. Coat. Technol., 132, 49 (2000). https://doi.org/10.1016/S0257-8972(00)00740-4
  14. J. Mateos, J. M. Cuetos, E. Fernandez and R. Vijande, Wear, 239, 74 (2000).
  15. P. Bansal, P. H. Shipway and S. B. Leen, Acta Mater., 55, 5089 (2007). https://doi.org/10.1016/j.actamat.2007.05.031
  16. M. Toparli, F. Sen and O. Culha, J. Mater. Prosess. Technol., 190, 26 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.115
  17. C. Karatas, B. S. Yilbas, A. Aleem and M. Ahsan, J. Mater. Prosess. Technol., 183, 234 (2007). https://doi.org/10.1016/j.jmatprotec.2006.10.012
  18. G. A. Rao, M. Kumar, M. Srinivas, Mater. Sci. Eng., A, 355, 114 (2003). https://doi.org/10.1016/S0921-5093(03)00079-0