• Title/Summary/Keyword: Porosity distribution

Search Result 499, Processing Time 0.031 seconds

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

A Study on the Migration Characteristics of Cs-137 in a Packed Column (충전층에서의 세슘-137의 이동특성에 관한 연구)

  • Lee, Jae-Owan;Cho, Won-Jin;Han, Kyung-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 1990
  • In this study the migration experiment using packed column with crushed tuff was conducted as a basic research to develop migration model of radionuclides through geologic media. The main emphasis was put on evaluating the validity of migration models. For this, two models were introduced: one is the model which is based on the assumption of instantaneous equilibrium reaction and the other the model based on kinetic process such as intraparticle diffusion. The coefficient of hydrodynamic dispersion in packed column was determined using iodine as nonsorbing tracer. The hydrodynamic dispersion coefficient, D$_{L}$ was shown to be 0.11$\times$10$^{-2}$ $\textrm{cm}^2$/min under the condition of the column porosity of 0.483 and the average water velocity of 0.915$\times$10$^{-2}$ cm/min. The distribution coefficient, Kd of Cs-137 on crushed tuff was 11.3 cc/g at the concentration of 2$\times$10$^{-6}$ M and the temperature of 2$0^{\circ}C$. The breakthrough curve of Cs-137 through packed column was shown to have an asymmetric curve in which long trailing tail appears at the end part of the curve. The results obtained from the comparison of introduced models with experimental data indicated that the mass transfer model with intraparticle diffusion as rate-controlling step simulated the behaviors of Cs-137 migration more adequately, when compared with the bulk reaction model in which the assumption of instantaneous equilibrium reaction was maded. Consequently, the intraparticle diffusion was found to be an important factor in the migration of Cs-137 through packed column.n.

  • PDF

Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Orchard Fields (지형에 따른 전북지역 과수원 토양의 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.859-865
    • /
    • 2011
  • This study looked into 110 sites of orchard fields to investigate the relationships between the physical and chemical properties of soils, including heavy metal contents, and the topographic characteristics of the fields in Jeonbuk province. The topographic distribution of orchard fields in Jeonbuk province was local valley and fans, hilly and mountains, mountain foot slopes, alluvial plains, diluvium, and fluvio-marine deposits. Forty-six percent (46%) of total orchard fields were located in the hilly and mountains. Soil texture of the local valley and fans was mostly sandy clay loam, and the soil texture of other topographical sites were varied. Bulk density, porosity, and soil hardness were not different among the various topographic sites. The content of plant available water was the highest (19.5%) in the sites of diluvium. Soil pH, electrical conductivity (EC), and exchangeable $Mg^{2+}$ content were the highest in the sites of fluvio-marine deposits, whereas the contents of soil organic matter (SOM), available phosphorus, and exchangeable $Ca^{2+}$, $K^+$, and $Na^+$ were not significantly different among the topographic sites. Also, soil pH and SOM content were generally in optimal ranges for the fruit plants in the orchard fields, but other values were mostly higher than those in optimum. In addition, the contents of heavy metals were much lower than the levels of Soil Contamination Warning Standard.

Correlation between the Factors of Soil Physical Property in Upland Soil (밭작물 토양물리성 지표관련 인자의 상관분석)

  • Kim, Chan-Yong;Seo, Young-Jin;Kwon, Tae-Young;Park, Jun-Hong;Heo, Min-Soon;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.793-797
    • /
    • 2010
  • The investigations were conducted to improve the physical properties by analyzing physico-chemical properties on the different soil families of textures at 20 upland fields located in the parts of Gyengsangbuk-do area. Soil physico-chemical properties were analyzed for bulk density, hardness, porosity, moisture, pH, EC and organic mater by soil depth on the different soil families of textures. Bulk density distributions were higher than 1.2 Mg $m^{-3}$ in the optimum range. Hardness distributions were lower than 20 mm in the optimum range. Therefore, the physical properties of upland soil was deteriorated. Correlation coefficient of bulk density with hardness and organic mater were higher significantly, that was positive and negative, respectively. The soil hardness had the greatest distribution degree to the crop yield and bulk density and organic matter followed. Conclusively, To improve the physical properties of upland soil was more effective to fertilizing organic matter than other ways.

Degradation Assessment of Forest Trails in Gyeongnam Domain of Mt. Jiri (지리산 숲길 경남권역 구간의 훼손 실태 평가)

  • Park, Jae-Hyeon;Huh, Keun-Young;Lim, Hong-geun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.476-482
    • /
    • 2011
  • As part of studies on the reduction of forest trails degradation caused by high users density, this study was carried out to investigate soil physical properties of forest trails of Gyeongnam Domain in Mt. Jiri, Southeast Korea. Since the forest were opened for leisure trailing in 2008, the average soil erosion amounts per a square meter on the forest trails were $0.0015m^3$ from Inweol to Gumgeo, $0.0018m^3$ from Dongang to Suchol, and $0.0027m^3$ from Suchol to Chungam for 3 years. But, from Chungam to Agyang, the erosion was almost not occurred because it was recently opened. The soil hardness in 5 cm depth was significantly higher than in 10 cm depth. It indicates that intensive soil compaction by users has mainly affected in 5 cm soil depth until now on. In three forest trails compacted intensively, the porosity of 0-7.5 cm soil layer was down to 1.4-1.5 times compared to that in 2008. In additions, the bulk density was up to 1.6-3.1 times compared to the controls, which were not opened to users. As a result, the degradation caused by high users density would keep occurring on the three forest trails unless any counterplans are considered for the degradation reduction. At the moment, users distribution to other forest trails and long-term sabbatical years would be the most effective counterplans to keep from users gravitation on the three forest trails.

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.

Geotechnical Properties of Pelagic Red Clay in Northeast Equatorial Pacific (북동태평양 원양성 적점토의 지질공학적 특성에 관한 연구)

  • Chi, Sang-Bum;Lee, Hyun-Bok;Hyeong, Ki-Seong;Ju, Se-Jong;Lee, Gun-Chang;Ham, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2008
  • In order to understand the physical properties of deep-sea sediments, which mainly consist of pelagic red clays, sediment samples were collected at 24 stations using a multiple corer in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific. The sampled sediment cores were examined for the mass physical properties(i.e. grain size distribution, mean grain size, water content, specific grain density, wet bulk density, void ratio, and porosity) and the geotechnical properties(i.e. shear strength and consistency limits) with the content of biogenic opal and mineral composition. Although KR1 and KR2 areas on the same latitude are logitudinally far from each other, the mass physical properties of these areas are not distinctly different except for shear strengths. The maximum shear strength of surface sediments in KR2 area is higher than that in KR1 due to the appearance of a consolidated lower layer(Unit 3) in the sediment core from KR2.

Pedogenesis of Forest Soils(Kandiustalfs) Derived from Granite Gneiss in Southern Part of Korea (우리나라 남부지역(南部地域) 화강편마암질(花崗片麻巖質) 삼림토양(森林土壤)의 토양생성(土壤生成))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.2
    • /
    • pp.186-199
    • /
    • 1997
  • The soils derived from granite gneiss occupy almost one third of the land area in Korea. The soils under forest vegetation, formed on granite gneiss, in Sun chon-shi, Chollanam-do in southern part of Korea, were studied to evaluate the weathering and the transformation of primary minerals into secondary minerals, clay minerals. The studied soils contained large amounts of ferromagnesian minerals, weathered biotites and were well weathered, strongly acid and low in organic matters and in ration exchange capacity. The clay contents in the Bt horizon were almost two times higher than those in the C horizon. The O horizon had a thin layer which consisted of a little decomposed plant components with a granic fabric and high porosity, and showed the micromorphological characteristics of moder humus. The related distribution pattern of the E horizon were enaulic and large amounts of silts and small amounts of sand grains were another characteristics of the E horizon. The most striking micromorphological features were multilaminated clay coating and infillings in the voids in the Bt and C horizons, and generally limpid ferriargillans ejected from the biotites and imparted red color to the soils in the Bt horizon. High clay contents in the Bt horizon was not only due to clay translocation, but also due to intensive in situ mineral weathering in this horizon. The most significant pedogenic process, revealed by the petrographic microscope and SEM, was the formation of iron oxides from biotites, the formation of tubular halloysites and the weathering models of biotites; wedge weathering and layer weathering. The thick coating on the weathering biotites showed the characteristics of the weathering process and the synthetic hematites were revealed in clays by TEM. Total chemical analysis of clays revealed extensive loss of Ca, and Na and the concentration of Fe and Al. Mineralogical studies of clays by XRD showed that micas were almost completely weathered to kaolinite, vermiculite-kaolinite intergrade, hematite, gibbsite, while halloysites from other primary minerals. Some dioctahedral mica appeared to be resistant in the soils. Parent rock of the soils contained a considerable amounts of biotites and this forest soils showed especially a dominant characteristics of biotite weathering.

  • PDF

Characteristics of Sintered Bodies Made from the System of Paper Sludge Ash - Fly Ash - Clay (종이재-석탄회-점토계 소지를 이용한 소결체의 특성 연구)

  • Hong, Jin-Ok;Kang, Seung-Gu;Lee, Ki-Gang;Kim, Yoo-Taek;Kim, Young-Jin;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.908-913
    • /
    • 2001
  • Paper sludge Ash (PA) and Fly Ash (FA) wastes are usually land-filled for reclamation or substituted for cements as a resource. It could also offer some advantages when they are substituted for clay to preserve the environment. To recycle those wastes, the sintered specimen made of PA-FA-Clay system were examined to find the microstructure and physical properties. The ratio of clay to wastes was fixed as 30:70 by wt%, while PA to FA within waste portion were varied in the range of $1:6{\sim}7:0$. Those specimens were fired in $1150{\sim}1350^{\circ}C$. It was found that the relative density of sintered specimen was increased with amount of PA added at low sintering temperature (i.e, $1150{\sim}1200^{\circ}C$). This is due to increased amount of liquid during sintering. It is shown, however that at high sintering temperature ($1250{\sim}1350^{\circ}C$), the relative density of specimens was decreased with amount of PA added. This is because of overfiring phenomenon which may be able to induce an inhomogeneous microstructure and increased porosity. The mechanical properties of sintered specimen were depended upon the homogeneity of microstructure in accordance with SEM (Scanning Electron Microscopy) and pore size distribution analysis. For example, the compressive strength of 10PA-60FA-30Clay specimen sintered at $1225^{\circ}C$ was twice higher than that of 70PA-30Clay specimen even thought the relative density of those specimen was similar. This decreased strength of 70PA-30Clay specimen appears to be an inhomogeneity of microstructure due to overfiring.

  • PDF

Rice Growth and Yield at Different Cultural Methods under No-tillage Condition (벼 무경운 재배시 재배양식에 따른 생육 및 수량)

  • 박홍규;김상수;백남현;석순종;박건호;이선용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.420-428
    • /
    • 1996
  • This study was conducted to investigate the response of growth and yield of rice under five different cultural methods, machine transplanting(MTNT), puddled drill seeding (PDSNT), drill seeding on soil surface (DSNT) , broadcasting on soil surface (BSNT) under no-tillage paddy condition and conventional machine transplanting(MTT) in Jeonbuk series(siltyloam soil) from 1993 to 1995. Soil hardness was higher in no-tillage soil and increased with highly difference between tillaged and no-tillage soil with deeper soil depth. Bulk density was heavier in no-tillage soil and porosity was higher in tilled soil than that of the control. The rate of effective tiller was higher in MTT, following MTNT, PDSNT, DSNT and BSNT. Weed occurrence was more serious in no-tillage soil, than that of tillaged soil. The rate of lower internode length was lower in DSNT and BSNT and was similar with MTT in PDSNT and MTNT. Height of center gravity in terms of lodging tolerance was lower in direct seeding than in machine transplanting. Depth of buried culm was shorter in no-tillage soil, especially in DSNT and BSNT. Total amount of root was higher in MTT, following MTNT, PDSNT, BSNT and BSNT and the distribution rate of root in shallower soil layer was higher in no-tillage soil, especially in BSNT and DSNT. Field lodging occured highly in BSNT, following DSNA, PDSNT and MTNT with high lodging scale in DSNT and BSNT. Panicle number per unit land square meter was the highest in MTT and the least in BSNT. Ripened grain ratio was low in BSNT and DSNT due to heavy lodging. Yield of milled rice was 93% in PDSNT, 87% in DSNT, 81% in BSNT and 96% in MTNT, compared with 534kg /10a in MTT.

  • PDF