• Title/Summary/Keyword: Poroelastic medium

Search Result 3, Processing Time 0.019 seconds

Plane strain consolidation of a compressible clay stratum by surface loads

  • Rani, Sunita;Puri, Manoj;Singh, Sarva Jit
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.355-374
    • /
    • 2014
  • An analytical solution of the fully coupled system of equations governing the plane strain deformation of a poroelastic medium with anisotropic permeability and compressible fluid and solid constituents is obtained. This solution is used to study the consolidation of a poroelastic clay layer with free permeable surface resting on a rough-rigid permeable or impermeable base. The stresses and the pore pressure are taken as the basic state variables. Displacements are obtained by integrating the coupled constitutive relations. The case of normal surface loading is discussed in detail. The solution is obtained in the Laplace-Fourier domain. Two integrations are required to obtain the solution in the space-time domain which are evaluated numerically for normal strip loading. Consolidation of the clay layer and diffusion of pore pressure is studied for both the bases. It is found that the time settlement is accelerated by the permeability of the base. Initially, the pore pressure is not affected by the permeability of the base, but has a significant effect, as we move towards the bottom of the layer. Also, anisotropy in permeability and compressibilities of constituents of the poroelastic medium have a significant effect on the consolidation of the clay layer.

Practical Numerical Model for Nonlinear Analyses of Wave Propagation and Soil-Structure Interaction in Infinite Poroelastic Media (무한 다공성 매질에서의 비선형 파전파 해석과 지반-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.379-390
    • /
    • 2018
  • In this study, a numerical approach based on mid-point integrated finite elements and a viscous boundary is proposed for time-domain wave-propagation analyses in infinite poroelastic media. The proposed approach is accurate, efficient, and easy to implement in time-domain analyses. In the approach, an infinite domain is truncated at some distance. The truncated domain is represented by mid-point integrated finite elements with real element-lengths and a viscous boundary is attached to the end of the domain. Given that the dynamic behaviors of the proposed model can be expressed in terms of mass, damping, and stiffness matrices only, it can be implemented easily in the displacement-based finite-element formulation. No convolutional operations are required for time-domain calculations because the coefficient matrices are constant. The proposed numerical approach is applied to typical wave-propagation and soil-structure interaction problems. The model is verified to produce accurate and stable results. It is demonstrated that the numerical approach can be applied successfully to nonlinear soil-structure interaction problems.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.