• Title/Summary/Keyword: Pore-air pressure

Search Result 81, Processing Time 0.023 seconds

An Empirical Study on the Characteristics of Pore Water Pressure Reaction in Colluvium Model (붕적층내의 간극수압 반응에 관한 실험적 연구)

  • 정두영;최길렬
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.59-70
    • /
    • 1992
  • This work is to study experimentally the measurment of pore air pressure according to rainfall in colluvium model and the characteristics of pore water pressure according to increasement of artesian ground water head. After modeling a geological feature of the Tertiary formation, the experiment was performed about sixty times on three kinds of soil. This experimental results showed the variation of pore water and pore air pressures with time, the change of void ratio and appling pressure head in the nonsaturated soil. It can be also expressed by the final pore water and the air reaction ratios and then formularizing the relationship between the permeability coefficient and the void ratio. In the results of this experiment, the patterns of the pore water pressure reaction are classified by the step-type and the wave-type, and the time-lag to reach final point of pore water pressure is in order sand, sandy silt and clayey sand.

  • PDF

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Comparison of pore analysis techniques of the paper (종이의 Pore 특성 측정 기법의 비교)

  • Nam, Ki-Young;Chung, Sun-Ki;Won, Jong-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.179-186
    • /
    • 2007
  • The best way to understand paper properties is to study paper structure. Paper is composed solid materials (pulp and other additives) and air three-dimensionally, it's important to understand pore structure of the paper. There are several method to analysis pore structure of the paper. Mercury intrusion technique is frequently used for the characterization of the porous paper, giving access to parameters such as pore size and pore distribution. But some researchers indicated mercury intrusion distorts the structure due to application of high pressure. So this paper suggest new analysis technique to pore structure of the paper. New pore analysis technique with SEM does not require high pressure, gives good resolution and measures pore structure.

  • PDF

The Shear Characteristics of Unsaturated Sandy Soils (불포화 사질토의 전단특성)

  • Lim, Seong-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.57-64
    • /
    • 2007
  • Since matric suction of unsaturated soil was related to soil and ground water contaminations, it is very important to analyze its mechanism that was represented by shear characteristics. In three phases of soil, a little air makes the condition of unsaturated soil on contract or shrinkage surface between water and air. Capillarity and suction in pore of unsaturated soil cause surface tension and surface force so it makes negative pore water pressure and increases effective stress as a result. Therefore, negative pore water pressure in partially saturated soil affects the soil structure and degree of saturation and it is important to evaluate accurately unsaturate flow and behavior. In this study, the shear strength characteristics of the seven sandy soils were investigated using consolidated drained triaxial tests with special emphasis on the effects of the negative pore pressure and the matric suction. These tests involved shearing under either a constant net confining pressure and varying matric suction or under a constant matric suction and varying net normal stress.

PORE PRESSURE AND EFFECTIVE STRESS IN THE SATURATED SAND-BED UNDER THE VARIATION OF WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.107-119
    • /
    • 2003
  • The behavior of pore pressure and effective stress in a highly saturated sand bed under variations in the water pressure in its surface were investigated to determine the mechanism of the collapse of hydraulic structures during flooding or when attacked by storm waves. The vertical, one-dimensional model was used as a basic model to clarify the effect of water pressure variation on only to the vertical direction. The theoretical results show that a sand bed under variations of water pressure is weakened by an increase in excess pore pressure and that under certain conditions the sand bed will liquefy. Although many factors related to water pressure variation and property of the material determine this phenomenon, the mist important factor seems to be the small amount of air present in the sand bed. The theoretical results reported are verified by experiments.

  • PDF

A Laboratory Model Study on the Reactions of the Pore Water Pressure in the Weakened Layer of a Natural Slope by the Confined Groundwater (피압지하수에 의한 자연사면 연약층내의 간극수압 반응에 관한 모형 실험 연구)

  • Jeong, Doo Young;Lee, Kwang Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.583-594
    • /
    • 1994
  • One of the major elements of a natural landslide is the increase of the pore water pressure in a weakened layer. Therefore, the measurement of the pore water pressure in the layer is important. This work is a laboratory model study of the measurement of the pore water pressure with regard to the confined groundwater level, the permeability of the crack zone and the weathering degree of the weakened layer. By the model of the Tertiary period failure type and the Colluvium failure type, the reactions of the pore air pressure and the pore water pressure were measured in the weakened layer according to the permeability of the filter on the condition of the confined groundwater states. On the reaction phase of the pore pressure according to the during time, the Tertiary period failure type proved to be a step type and the Colluvium failure type turned out to be a wave type. The reaction ratios of the pore water pressure in the Tertiary period failure type are higher than the Colluvium failure type, decrease according to increasing of the weathering degree of the weakened layer.

  • PDF

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Triaxial Compressive Behaviour of Unsaturated Silt under Different Drainage Conditions (다양한 경계조건에서의 불포화 실트의 삼축압축 거동)

  • Kim, Young-Seok;Oka, Fusao
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.998-1003
    • /
    • 2008
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. Various triaxial compression tests for unsaturated soil under different drainage conditions are carried out. The behaviour of the pore pressure, namely, the pore-air pressure and the pore-water pressure, and matric suction during the shearing tests are investigated. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction.

  • PDF

Pore Condensation-Based Separation of VOCs by a Microporous Ceramic Membrane (미세다공성 세라믹 막에서의 가공응축기구에 의한 휘발성 유기화합물의 분리)

  • Cha, Jun-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.E
    • /
    • pp.19-28
    • /
    • 1996
  • A pore concensation-based separation technique was studied experimentally using toluene and xylene in a nitrogen stream. The removal rate of toluene and xylene on a microporous ceramic membrane was enhanced by increasing the partial pressure difference across the membrane, but the selectivity was reduced with increasing flux of nitrogen. This was found both in vacuum and pressure modes of operation. The experimental results from this study suggest that the pores mear the inlet portion of the module were filled with the organic solvent while the pores near the exit section of the module were slightly opened as the solvent concentration was depleted along the module. In the case of xylene, the rate of N$_{2}$ permeation was reduced considerably relative to toluene, resulting in a much higher separation gactor. Condensibility of xylene appeared to be higher than that of toluene, the potential for pore condensation-based separation of xylene was also found to be higher than that for toluene.

  • PDF